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1.1 INTRODUCTION 

Dear learners, in lower classes, you have seen that when we rub two bodies together, the both 
bodies begin to attract light bodies like cotton, straws, and feathers of birds or small pieces of 
paper. Such experienceswere studied byancient Unani philosopher Thales about 2500 years back. 
When he rubbed amber with woolen cloth, amber acquires the property of attracting light bodies. 
When a glass rod is rubbed with silk, it also acquires the same property of attracting light bodies. 
When a body acquires such type of property, it is said to be electrified or the body is said to be 
charged electrically. In Unani language amber is said to be electronand the energy due to which 
amber acquires the property of attracting light bodies is called electricity.When we rub any solid 
material with another material under suitable conditions, it gets charged electrically. The process 
of acquiring charges by bodies when they are rubbed with each other is known as frictional 
electrification.  

It is found experimentally that there are of two types of charges- positive charge and negative 
charge. In fact, when we rub two bodies with each other, there is a transfer of electrons from one 
body to another.  The body which loses its electrons becomes positive (positively charged) and 
the body which gains electrons from first body becomes negative (negatively charged). Thus, 
there are of two charges i.e. positive charge and negative charge. The magnitude of charges on 
each body depends on the number of transferred electrons. The names positive and negative 
charges were given by an American Scientist named Benjamin Franklin in 1750. The names of 
positive and negative charges are purely conventional.  

In this unit, the learners shall study thevarious properties of charges, experiment showing the 
quantization of charge i.e. Millikan’s oil drop experiment, Coulomb’s law and its applications. 

1.2 OBJECTIVES 

After studying this unit, you should be able to- 

• know about charges and their properties 
• learn quantization of charge 
• learn about Millikan’s oil drop experiment 
• know about Coulomb’s law and their applications in daily life 
• solve problems using the theory of Millikan’s oil drop experiment 
• apply Coulomb’s law  

1.3 PROPERTIES OF CHARGES 

We know that charges have peculiar properties. Let us know about these properties of charges- 

(a) Like charges repel and unlike charges attract. 
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(b) A charged body attracts to uncharged (neutral) bodies due to electrostatic induction.  
(c) Charge on a body remains unaffected by motion i.e. the charge on a body or particle 

remains the same whether it is at rest or moving with any velocity. 
(d) The electric chargeis additive. It means that the total charge on an extended body is the 

algebraic sum of the charges located at different points in the body. If a body has positive 
and negative charges both, then the net charge of the body is the algebraic sum of all the 
charges i.e. Q = Ʃ q. A neutral body has equal amount of positive and negative charges so 
that the charge on a neutral body is always zero. 

(e) Charge is conserved i.e. it can neither be created nor destroyed but it may simply be 
transferred from one body to another body. 

(f) Charge is quantized i.e. any physically existing charge is an integral multiple of the 
elementary charge (e). 

Now, we shall discuss the properties of conservation of charge and quantization of charge in 
detail. 

1.3.1 Conservation of Charge 

Charge can neither be created nor destroyed but it may simply be transferred from one body to 
another body. This is known as conservation of charge or principle of conservation of charge. 
The principle of conservation of charge may also be stated as “The net charge of an isolated 
system remains constant.” Charge is conserved in every physical and chemical process. 

1.3.2 Quantization of Charge 

“Charge is created by transfer of electrons; therefore the net charge on a body is always an 
integral multiple of magnitude of charge on an electron.” 

We know that the charge on a body is produced due to excess or deficiency of electrons. Electron 
cannot be divided into further smaller parts. Therefore, charge on a body is integral multiple of 
the amount of charge on electron. This smallest amount of charge is 1.6x 10-19 coulomb and is 
denoted by ‘e’. The magnitude of charge on an electron is called the fundamental charge or 
elementary charge. Therefore, we can say that any physically existing charge is always an 
integral multiple of fundamental charge ‘±e’ i.e. all existing charges are found to be ‘ne’ (where 
n is a positive) such as e, 2e, 3e,……………., -e, -2e, -3e,……….. Mathematically, we can write 
q = ± ne, where ‘n’ is integer, n = 1, 2, 3,……… and ‘e’ is a positive quantity equal to + 1.6x 10-

19 coulomb. ‘e’ is also known as the quantum of charge. No charge is found in the fraction of e 
(as 0.5 e or 0.7 e or 2.7 e…… etc.). It means that electric charge cannot be divided indefinitely. 
This property of charge is called ‘quantization’ or ‘atomicity’ of charge. 

The charges of some natural elementary particles are as follows- 

charge of electron: -e, charge of proton: +e, charge on α-particle: +2e 
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The value of the elementary charge is so small that we do not experience the quantization of 
charge in daily life. Millikan’s oil drop experiment and many other experiments confirm the 
quantum nature of charge. 

1.4 MILLIKAN’S OIL DROP EXPERIMENT 

This is the experiment which confirms the quantum nature of charge. Let us discuss Millikan’s 
oil drop experiment.  

In 1909, Millikan performed a series of experiments to demonstrate the existence of elementary 
charge. He used tiny oil drops while latter on plastic spheres of known mass were used instead of 
oil drops. 

The apparatus consists of two parallel metallic plates P1 and P2 connected to +ve and –ve 
terminals of a battery through potential divider as shown in figure 1. The observations are taken 
with the microscope; hence the spheres (plastic balls) are illuminated by intense light. 

 

 

 P1 qE 

                                                                                    E                                              d 

 mg 

 P2 

                                                V 

 

 

 

                                                                          Figure 1 

The plastic balls are charged by friction and are thrown between two plates through a tube by a 
blower. At first, when the key is open, these spheres start falling due to force of gravity. Since 
their masses are equal and an equal viscous force due to air acts on them, all spheres have the 
same constant velocity called terminal velocity. Now, the key is closed, the plates P1 and P2 are 
charged and an electric field between plates P1 and P2 is established. Now the charged spheres 
experience two forces- 
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1. Force of gravity  
2.  Electric force 

If lower plate is connected to the +ve terminal of battery, the direction of electric field is upward 
and therefore an electric force due to this field acts upward. Since the charge on the spheres is 
different they experience different electric force. 

We can adjust the electric potential by potential divider and establish equilibrium. Thus in the 
condition of equilibrium, the two forces are equal in magnitude but opposite in direction. 

If the mass of the sphere is ‘m’ and charge ‘q’, then we have- 

qE = mg                                                                                                                                  …..(1) 

If the two plates P1 and P2 are separated by a distance d and the potential difference between 
them is V, then electric field E = V/d         

From equation (1), q V/d = mg 

or  q = mgd / V                                                                                                                        …..(2) 

But mgd = constant, since the masses of all spheres are same 

Therefore, q ∝ �
�                                                                                                                  …..(3) 

or qV = constant                                                                                                                     …..(4) 

Various potentials are applied to balance the spheres of different charge. If spheres have charges 
q1, q2, q3,………., then corresponding potentials are V1, V2, V3, ……, hence  

q1V1= q2V2 = q3V3…………..= constant 

Since 
�
�  is proportional to charge q of the ball, the ratio 

�
�� , �

�� , �
��  ………… are in integral 

multiple ratio. Obviously, the charge on each ball is integral multiple of minimum value. That 
minimum value of charge is electronic charge ‘e’. 

Thus q= ne                                                                                                                               …..(5) 

or 
	

 = n (an integer) 

Thus Millikan’s oil drop experiment confirms the quantum nature of charge. 

Example 1:  A plastic piece rubbed with wool is found to have a negative charge of 5 x10-7 
coulomb. Calculate the number of electrons transferred. 

Solution: Given q= 5 x10-7 coulomb 
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Using q = ne, we get- 

n = 
	

 = 

�×�
��
�.�×�
��� = 3.125 x 1012 

Example 2: In Millikan’s oil drop experiment the charge on any three drops was found to be 
1.6x10-19, 4.8x10-19 and 9.6x10-19 coulomb. What is the conclusion of these results? 

Solution: The given charges on the drops are- q1= 1.6x10-19coulomb, q2 = 4.8x10-19 coulomb= 3x 
1.6x10-19coulomb, q3= 6x 1.6x10-19 coulomb 

Obviously, the maximum common factor among the given charges is 1.6x10-19coulomb and this 
is the minimum possible charge. Therefore, the elementary charge = 1.6x10-19coulomb. 

Also, all given charges are integral multiples (i.e. 1 times, 3 times and 6 times) of elementary 
charge. This confirms the quantum nature of charge. The conclusion of these results is that 
elementary charge is 1.6x10-19coulomb and charge is quantized. 

Self Assessment Question (SAQ) 1:Wool rubbed with a polythene piece is found to have a +ve 
charge. State from which to which the transfer of electrons took place. Is there a transfer of mass 
from wool to polythene or vice versa? 

Self Assessment Question (SAQ) 2:A oil drop of mass 5 gm is hanging in equilibrium between 
two charged plates as shown in figure. Calculate the magnitude and nature of charge on the drop. 

 

   

                     50 V        Oil drop                                      10 cm 

 

  

1.5 COULOMB’S LAW 

You have read in the previous sections that two like charges repel each other and two unlike 
charges attract each other. Thus, we can say that a force acts between two charges. This force is 
known as ‘electric force’. The electric force between like charges is repulsive and that between 
unlike charges is attractive.  

In 1785, Coulomb, on the basis of experiments, stated a law regarding the force acting between 
two charges. According to this law, “The force of attraction or repulsion between two point 
charges is directly proportional to the product of the charges and inversely proportional to the 
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square of distance between them. The direction of this force is along the line joining the two 
charges”. This law is called Coulomb’s inverse square law. 

 

                                       q1                                                                 q2 

             r 

 

                                                                         Figure 2 

If two point charges q1 and q2 are separated by a distance r, then the force F acting between them 
is given by- 

F ∝ 	�	�
��  

   F = k 	�	�
��       …..(6) 

Where, k is proportionality constant, whose value is given by
�

�πε�, if the charges are placed in 

vacuum (or air). If the charges, distance and the force are measured in coulomb(C), meter (m) 

and Newton(N) respectively, then 
�

�πε� = 9 x 109 N-m2/C2. The constant �
 is read as epsilon zero 

and called ‘permittivity of free space’. Its value is 8.85x 10-12 C2/N-m2. 

If q1 = q2 = 1 coulomb and r = 1 meter, then from equation (6), we get- 

F = 9 x 109x 
�×�
��  = 9 x 109 Newton  

Hence, 1 coulomb is that charge which, when placed at a distance of 1 meter from an equal and 
similar charge in vacuum (or air), repels it with a force of 9 x 109 Newton.  

If charges are placed in a medium like glass, wax, paper etc., then the force between the charges 
is given by- 

                                                             F = 
�

�π�
	�	�

��                                                                …..(7) 

where ε is called the absolute permittivity of the material medium and is equal to Kε0 i.e. ε = 
Kε0, where K is a dimensionless constant known as the dielectric constant or relative permittivity 
or specific inductive capacity of the material and the material is called dielectric.  

We can write the equation (7) as- 

F = 
�

�πε��
	�	�

��                                                                                                                          …..(8) 
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For all dielectrics the value of K is greater than 1. Obviously, we can see that if there is a 
dielectric between the charges, then the electric force between the charges decreases. For metals 
K is infinite and for water K= 81 

In vector form, we can write – 

1 2
12 2

0

1
ˆ

4

q q
F r

rπε
=

r
…..(9) 

where r^  is the unit vector along r→.  

r^12A                                                 B     r^21 

F12 q1                                                                          q2F21 

                                                                                    r 

                                                                                  Figure 3 

Let us consider two point charges q1 and q2  are placed at points A and B respectively and the 
distance between them is r. 

The force exerted on charge q1  due to charge q2 can be written as- 

 

1 2
12 122

0

1
ˆ

4

q q
F r

rπε
=

r
  …..(10)    

(Since r��^ = 
���→

� , the unit vector along B to A i. e. along position vector r��→ ) 

Similarly, the force exerted on charge q2 due to charge q1can be written as- 

F12�� =  1
4πε


q�q�r� r��^ 

                                                                 = 
�

�πε�
	�	�

�� r��→                                                      …..(11)     

But r��→  = - r��→ , therefore equation (11) can be written as- 

F12�� =  − �
�πε�

	�	�
�� r��→        …..(12) 

Comparing equations (10) and (12) we get- 

F12�� =  −F12�� 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 9 

 

It means that Coulomb’s force exerted on q1 by q2 is equal and opposite to the Coulomb’s force 
exerted on q2 by q1 ; in accordance with Newton’s third law. Thus, Newton’s third law also holds 
for electrical forces. 

1.5.1 Conditions of Validity of Coulomb’s Law 

In the previous section, you have seen that Coulomb’s law between two point charges is an 
inverse square distance law. It holds only for point charges and spherical charges at sufficient 
separation, assuming the charge to be concentrated at their centres, however, it may be applied to 
extended objects provided the distance between them is much larger than their dimensions. Both 
charges must be point charges i.e. the extension of charges should be much smaller than the 
separation between the charges. The separation between the charges must be greater than nuclear 
distance ( 10-15 m) because for distances less than 10-15 m, the nuclear attractive forces become 
dominant over all other forces.  

1.5.2 Importance of Coulomb’s Law 

Dear learners, as you know that Coulomb’s law is true for point charges separated by from very 
large distances to very small distances such as atomic distances (≈ 10-11m) and nuclear distances 
( ≈ 10-15 m). Therefore, it is not only gives us the force acting between charged bodies but also 
helps in explaining the forces which bind electrons with nucleus in an atom, two or more atoms 
in a molecule and many atoms or molecules in solids and liquids. In our daily life, we experience 
many forces which are not gravitational but are electrical. The particles in the nucleus (protons 
and neutrons) of an atom are bound together by a very strong attractive force named as the 
nuclear force. This force neither depends upon whether a particle is charged or uncharged nor it 
has any relation with the Coulomb’s law. But it does not mean that the protons in the nucleus do 
not have Coulomb’s electrical repulsive force between them. The electrical repulsive force is 
there, although it is negligible in comparison to the nuclear attractive force, and plays a vital role 
inside the nucleus. If this force would not have been there, the heavy nuclei would not have been 
radioactive and the heavy elements beyond uranium (which are unstable) would have been 
stable. 
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1.5.3 Comparison of Coulomb’s Force and Gravitational Force 

In addition to Coulomb’s force, gravitational force also acts between two charged bodies. The 
comparison between Coulomb’s force and Gravitational force is tabulated below- 

S. No. Coulomb’s force Gravitational force 

1. The Coulomb’s force (electrical 
force) between two charged bodies of 
charges q1 and q2 at separation r is 
given as- 

Fe = 
�

�πε��
	�	�

��  

The gravitational force acting between two 
bodies of masses m1 and m2 at separation r 
is given as- 

1 2
2g

Gm m
F

r
= , where G is known as 

Universal Gravitational Constant and G = 
6.67 x 10-11 N-m2/Kg2 

2. The Coulomb’s force may be 
attractive or repulsive in nature. 

The gravitational force is always attractive. 

3. 
 

The Coulomb’s force (electrical 
force) depends upon the medium 
between the charges. 

The gravitational force is independent of 
medium between the masses. 

4. The Coulomb’s force is much 
stronger. 

The gravitational force is much weaker than 
the Coulomb’s force. 

 

Example 3: Calculate the Coulombian force between two protons when the distance between 
them is 4 × 10-15 meter. Also give the nature of this force. 

Solution: Given r = 4 × 10-15 meter 

We know, the charge on proton = 1.6 × 10-19 C (positive), therefore, q1 = q2 = + 1.6 × 10-19 C 

Applying Coulomb’s law- 

                                                             F = 
�

�πε�
	�	�

��  

or  F = 9× 109 ×1.6 × 10-19×1.6 × 10-19 /(4×10-15)2 

        = 14.4 Newton ( repulsive) 

Example 4:Show that the gravitational force is negligible in comparison to electric force in 
hydrogen atom in which the electron and proton are about 5.3 × 10-11 metre apart. 

Solution: The gravitational force between electron and proton is given by- 

1 2
2g

Gm m
F

r
= , Here m1= mass of electron= 9.1×10-31 Kg, m2 = mass of proton = 1.6 ×10-27 Kg, r 

= 5.3 × 10-11 m and G = 6.67 x 10-11 N-m2/Kg2 
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Therefore, Fg= �.�7×�
���×8.�×�
���×�.�×�
���
9�.:×�
���;�  

                                                = 3.69×10-47 N 

Now electric force  Fe = 
�

�πε�
	�	�

��  

Here 
�

�πε� = 9 x 109 N-m2/C2 , q1 = q2 = 1.6 ×10-19 C 

Therefore, Fe = 9 x 109× 
�.�×�
���×�.�×�
���

9�.:×�
���;�  = 8.2×10-8 N 

Obviously, gravitational force is negligible in comparison to electric force in hydrogen atom in 
which the electron and proton are about 5.3 × 10-11 metre apart. 

Example 5:A charge Q is divided into two parts such that they repel each other with a maximum 
force when placed at a certain distance apart. Find the distribution of charge. 

Solution: Let the two parts of charge Q be Q’ and Q-Q’. The force between two parts is given as- 

                                                        F = 
�

�πε�
<=><?<=@

A�  

For maximum value of F, 
BC
BD′ =0     (r is constant) 

Therefore,                                              
�

�πε�
<?�<E

A�  = 0 

or                                                                 Q-2Q’ =0 

 or  Q’ = Q/2 

Therefore, the charge Q should be divided into two equal parts. 

Self Assessment Question (SAQ) 3:Two identical metallic spheres, having unequal opposite 
charges are placed at a distance of 0.30 metre apart in air. After bringing them in contact with 
each other, they are again placed at the same distance apart. Now the force of repulsion between 
them is 0.183 N. Calculate the final charge on each of them. 

Self Assessment Question (SAQ) 4:Two point charges +4Q and +Q are fixed at a distance r 
apart. Where a third point charge q should be placed on the line joining the two charges so that it 
is in equilibrium? In which condition the equilibrium will be stable and in which unstable? 

Self Assessment Question (SAQ) 5:Calculate absolute permittivity of water if dielectric 
constant of water is 81. 
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Self Assessment Question (SAQ) 6:Two positively charged particles, each of mass 1.7×10-27 
Kg and carrying a charge of 1.6 × 10-19 coulomb, are placed at a distance l apart. If each one 
experiences a repulsive force equal to its weight, find l. 

1.6 SUMMARY 

In the present unit, you have studied about electric charge, how it was discovered and its 
properties. You have studied that there is no effect of motion on the charge of a body i.e. the 
charge on a body or particle remains the same whether it is at rest or moving with any velocity. 
Charge is conserved i.e. it can neither be created nor destroyed but it may simply be transferred 
from one body to another body. You have also studied about the quantization of charge i.e. 
electric charge cannot be divided indefinitely. Millikan’s oil drop experiment has been discussed 
which confirms the quantum nature of charge. You have also studied Coulomb’s law, its 
conditions of validity and importance. According to Coulomb’s law, “The force of attraction or 
repulsion between two point charges is directly proportional to the product of the charges and 
inversely proportional to the square of distance between them. The direction of this force is along 
the line joining the two charges”. This law is called Coulomb’s inverse square law.You have 
studied that Coulomb’s law holds only for point charges and spherical charges at sufficient 
separation, assuming the charge to be concentrated at their centres, however, it may be applied to 
extended objects provided the distance between them is much larger than their dimensions. This 
law is true for atomic and nuclear distances. You have studied the comparison between 
Coulomb’s law and Gravitational force. It is clear that Coulomb’s law between two charged 
bodies is much stronger than the Gravitational force acting between them. Many solved 
examples are given in the unit to make the concepts clear. To check your progress, self 
assessment questions (SAQs) are given place to place. 

1.7  GLOSSARY 

Transfer- shift, transmit 

Conserved- preserved 

Performed- carried out or completed an action or function 

Demonstrate- show, display 

Intense- concentrated, powerful 

Illuminate- light up 

Viscous- thick, sticky 

Vacuum- void, vacuity 
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Dielectric- that does not conduct electricity, insulating 

Validity- legality, legitimacy 

1.8 TERMINAL QUESTIONS 

1. Explain quantization of charge. Hence define elementary charge. 

2. How many electrons must be removed from a piece of metal to give it + 1 ×10-7 C of charge? 

3. State and explain the principle of conservation of charge. 

4. Discuss Millikan’s oil drop experiment to verify the quantum nature of electric charge. 

5. In Millikan’s experiment, an oil drop of radius 10-4 cm remains suspended between the plates 
which are 1 cm apart. If the drop has a charge of 5e over it, calculate the potential difference 
between the plates. The density of oil may be taken as 1.5 g/cc. 

6. State Coulomb’s law in electrostatics. Mention two similarities and two dissimilarities 
between electrostatic and gravitational interactions. 

7. Does Coulomb’s law of electric force obey Newton’s third law of motion? 

8. Give the importance of Coulomb’s law. 

9.  Give comparison of Coulomb’s force and Gravitational force. 

 

1.9 ANSWERS 

Self Assessment Questions (SAQs): 

1. When two neutral bodies are rubbed together, electrons of one body are transferred to the 
other. The body which gains electrons is negatively charged and the body which loses 
electrons is positively charged. When wool is rubbed with a piece of polythene, the wool 
becomes positively charged and polythene becomes negatively charged. It means that 
electrons are transferred from wool to polythene. 
As we know that electrons have finite mass, therefore mass is transferred from wool to 
polythene. 
The transferred mass = number of electrons transferredx mass of one electron  

2. Given mass of drop m =  5 gm = 5x10-3 Kg, d= 10 cm= 0.10 m, V = 50 Volt 
and g = 9.8 m/sec2 
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                                                                qE 

 50 V          E 10 cm 

                                                                mg 

 

 

The electric field between the plates E = 
�
B  = 

�


.�
  = 500 volt/m (vertically upward from 

positive plate to negative plate) 

Weight of the drop W = mg = 5x10-3 x 9.8 = 49 x 10-3 Newton (vertically downward) 

Electric force acting on the drop F = qE = q x 500 Newton 

For the equilibrium, the two forces i.e. weight of drop and electric force acting on the drop 
should be equal and opposite in direction. The weight of the drop will act vertically 
downward, therefore the electric force on drop should act vertically upward. Therefore, F = W 

or q x 500 = 49 x 10-3 or q = 49 x 10-3/500 = 0.000098 coulomb (Positive charge) 

3. When identical metallic spheres are brought in contact, then after separation they carry equal 
charges. 
Let Q be the charge on each sphere, then force of repulsion between them will be- 

                                                            F = 
�

�πε�
< ×<

A�  

Here F = 0.183 N, r = 0.30 metre, 
�

�πε� = 9 x 109 N-m2/C2 

Therefore, 0.183 = 9 x 109 ×
<�

9
.:
;� 

 or      Q2 = 183 × 10-14 

or      Q = √183 × 10?�� = 13.527 ×10-7 = 1.35 × 10-6 Coulomb = 1.35 µC 
4. Let the third point charge q is placed between the charges + 4Q and + Q at a distance x from 

+4Q. 
The distance of third charge from + Q = r-x 
Let third point charge q be positive. 
 

                             +4Q                               F2     +q     F1 +Q 

r 

x                                   (r-x) 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 15 

 

The electric force on the charge +q due to the charge +4Q is- 

                                F1 = 
�

�πε�
�< ×J

K�      (repulsive) 

Similarly, the electric force on the charge +q due to the +Q is- 

 F2 = 
�

�πε�
< ×J

9A?K;�    (repulsive) 

For the equilibrium of charge +q, the above two forces should be equal and opposite. 
Therefore,                        F1 = F2 
 

�
�πε�

�< ×J
K�     = 

�
�πε�

< ×J
9A?K;� 

or                               4(r-x)2 = x2 

or                               2(r-x) = ±x 

or                                x = 2r/3 or  2r 

Only x= 2r/3 is possible because the charge + q is in between +4Q and +Q. Hence, for 
equilibrium, the charge +q will be placed at a distance 2r/3 from the charge + 4Q in between 
the two charges. If you displace the charge +q slightly from its equilibrium position(suppose 
towards right) then F1 will decrease and F2 will increase. Hence a net force (F2 – F1) will act 
on the charge +q towards left, due to which the charge will return to its equilibrium position. 
Thus the equilibrium of the charge +q is stable. 

Let third point charge q be negative. 
 

                             +4Q                               F1     -q     F2                   +Q 

                                                                             r 

x                                   (r-x) 

 

 

In this case, the force F1 and F2 will be of attraction and their directions will be according to 
the adjoining diagram. The charge –q will still be in equilibrium. If you displace this charge 
slightly towards right (say) then F1 will decrease and F2 will increase. Hence a net force (F2 – 
F1 ) will act on the charge –q but now its direction will be towards right. Hence the charge 
will go on moving towards right. Thus the equilibrium of the charge –q is unstable. 

5. Given K = 81, ε0 = 8.85x 10-12 C2/N-m2 
ε = Kε0 = 81 ×8.85x 10-12 = 7.16×10-10 C2/N-m2 

6. The repulsive force F = 
�

�πε�
< ×<

L�  
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Here, Q = 1.6 × 10-19 coulomb  

Therefore, F = 9 x 109× �.� × �
��� ×�.�×�
���
L�  

But F = mg= 1.7×10-27×9.8 = 1.66×10-26 N  

Therefore, 9 x 109× �.� × �
��� ×�.�×�
���
L�  = 1.66×10-26 

 or  l = 0.117 metre 

Terminal Questions: 

2. Given, q = +1×10-7 C 

    Using q = ne or n = q/e = 1×10-7/1.6×10-19 = 6.25×1011 

5. Given r= 10-4 cm = 10-6 m, d= 1 cm= 0.01 m, q= 5e= 5×1.6×10-19 = 8×10-19 C,  

ρ = 1.5 g/cc = 1.5×10-3/10-6 = 1.5×103 Kg/m3 

Volume of drop V = 
�
: π r3 = 

�
:×3.14× (10-6)3 = 4.18×10-18 m3 

    Mass of drop m = density× volume = ρ×V = 1.5×103×4.18×10-18 = 6.27×10-15 Kg 

    For equilibrium, qE = mg 

    or   q×V/d = mg  or   V = mgd/q = 6.27×10-15×9.8×0.01/(8×10-19)  

                     = 768.075 volt 

7. Yes 
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2.1 INTRODUCTION 

In the previous unit, you have learnt about charges, their properties, quantization and 
conservation of electric charge and Coulomb’s law. We know from our early studies that the 
mutual interaction between charged bodies can be interpreted as due to the force which each 
exert on the other, even though there is no material connection between them. This action at a 
distance view was considered to be inconvenient and troublesome. Faraday in 19th century 
introduced the so-called field concept to explain the mutual interactions between two charged 
bodies. This concept was subsequently developed by Maxwell. In this unit, you will study and 
learn about electric field, electric field intensity (strength) in different cases, electric potential 
and its calculation in different cases. In the unit, you will also study electric flux, Gauss’s law 
and the applications of Gauss’s law. The various concepts have been presented in a simple and 
clear manner. 

2.2 OBJECTIVES 

After studying this unit, you should be able to- 

• learn about electric field and electric potential 
• learn about electric lines of force 
• compute electric field intensity and electric potential in various cases 
• understand electric flux 
• understand Gauss’s law and its applications 
• solve problems based on electric field, electric potential and Gauss’s law 

2.3 CONCEPT OF ELECTRIC FIELD 

Let us consider an electric charge q located in space. If you bring another charge q0 near the 
charge q, then the charge q0 experiences a force of attraction or repulsion due to the charge q. 
The force experienced by q0 is said due to the electric field created by the charge q. Thus, “The 

space surrounding an electric charge in which another charge experiences a force 

(attractive or repulsive), is called the electric field of the electric charge”. We can say that“ 
The region in which a charge experiences a force is called the electric field”. 

If a charge q0 experiences a force in the space surrounding the charge q, then charge q is called 
the ‘source charge’ and the charge q0 is called the ‘test charge’. The source-charge may be a 
point-charge, a group of point-charges or a continuous distribution of charges. Further, the test 
charge must be vanishingly small so that it does not modify the electric field of the source 
charge. 
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2.4 INTENSITY OF ELECTRIC FIELD 

In order to determine the intensity (strength) of electric field at a point in the electric field, let us 
place an infinitesimal positive test charge q0 at that point. The force acting on this test charge is 
measured and this force divided by the test charge gives electric field strength. The test charge is 
assumed so small that it does not cause any change in initial electric field. Accordingly the 
electric field strength (or intensity) is defined as follows- 

“The intensity of electric field at a point in an electric field is the ratio of the force acting on 

the test charge placed at that point to the magnitude of the test charge”. It is a vector 
quantity and its direction is along the direction of force. 

Thus, if F12 be the force acting on a test charge q0 placed at a point in an electric field, then the 

intensity of electric field E112 of the field at that point is given by- 

E112 = C112
	�…..(1) 

Here, we have assumed that test charge q0 is infinitesimal, therefore the definition of intensity of 
electric field may be expressed as- 

0 0
0

lim
q

F
E

q→
=

r
r

…..(2) 

Force F12 is a vector quantity and test charge q0 is a scalar quantity. Hence intensity of electric 

fieldE112 will also be a vector quantity and its direction will be the same as the direction of the force 

F12 i.e. the direction in which the positive charge placed in the electric field tends to move. If test 

charge be negative, then the direction of electric field E112 will be opposite to the direction of the 
force acting on the negative charge. 

Obviously, the unit of intensity(strength) of electric field is Newton/metre. 

If the intensity of electric field E112 at a point in an electric field be known, then we can determine 

the force F12 acting on a charge q placed at that point by the following equation- 

F12 = qE112                                                                   …..(3) 

2.5 ELECTRIC LINES OF FORCE 

In the previous sections, we have studied that a charge placed in an electric field experiences an 
electrostatic force. If the charge be free, then it will move in the direction of the force. If the 
direction of the force continuously changes then the direction of motion of the charge also 
continuously changes i.e. it moves along a curved path. The path of a free positive charge in an 
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electric field is called ‘electric line of force’. Hence, “an electric line of force is that imaginary 

smooth curve drawn in an electric field along which a free, isolated unit positive charge 

moves. The tangent drawn at any point on the electric line of force gives the direction of the 

force acting on a positive charge placed at that point”. We can represent an electric field by 
lines of force. 

 Now we can define the intensity (strength) of electric field in terms of electric lines of force as 
follows- 

“The intensity of electric field at any point is defined as a vector quantity whose magnitude is 
measured by the number of electric lines of force passing normally through per unit small area 
around that point and whose direction is along the tangent on line of force drawn at that point”.  

 

 

 

 B 

                                   A 

 

                                                                                Figure 1 

Accordingly, nearer are the electric lines of force, stronger is the electric field and if farther are 
the electric lines of force, weaker is the electric field. In the figure 1, the electric field strength at 
A is greater than that at B. 

2.5.1 Properties of Electric Lines of Force 

(i)The electric lines of force appear to start from positive charge and to end on a negative    
charge. If there is a single charge, they may start or end at infinity. 

 

 

 

 

(a)                                                     (b) 
 

+ -  
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                                                           (c) 

 

 

 Figure 2 

(ii) The tangent drawn at any point on the line of force gives the direction of the force acting on a 
positive charge at that point. 

(iii) No two electric lines of forces can intersect each other because if they do so, then two 
tangents can be drawn at the point of intersection which would mean two directions of 
electric field intensity at one point which is impossible. In figure 3, two directions of electric 
field at point of intersection P have been shown which is not possible. 

  E 

 

   

1P E 

  2  

 

 

 

                                                                               Figure 3 
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(iv) The electric lines of force do not pass through a conductor because electric field inside a 
conductor is zero. 

(v) The equidistant electric lines of force represent uniform electric field while electric lines of 
forces at different separations represent non-uniform electric field. The relative closeness of 
lines of force in different regions of space expresses the relative strength of the electric field 
in different regions. In regions, where lines of force are closer, the electric field is stronger 
whereas in regions where lines of force are farther apart, the field is weaker. 

 

 

 

 

 

 

 

(a)                                                                       (b) 

                                                                           Figure 4 

 

(vi) The electric lines of force have a tendency to contract in length like a stretched elastic string 
and separate from each other laterally. The reason is that opposite charges attract and similar 
charges repel. 

(vii) The electric lines of force are always in the form of open curves, they do not form closed   
loops. 

(viii) The electric lines of force are imaginary but the electric field they represent is real. 

2.6 CALCULATION OF ELECTRIC FIELD INTENSITY  

In this section, we shall calculate electric field intensity in various cases viz. due to a point 
charge, due to a system of point charges and due to a continuous charge distribution. 
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2.6.1 Due to a Point-charge 

Let us consider an isolated point charge +q coulomb placed at a point M in air (or vacuum). In 
the electric field produced by the charge +q there is a point P, distant r meter from M, at which 
the intensity of electric field is to be calculated. 

 

 +q                                                             +q0 A 

 M                                                                   P F 

                                                                     r 

 

        Figure 5 

Let us assume that a test charge q0 is placed at the point P. According to Coulomb’s law, the 

electric force acting on q0,    F = 
�

�πε�
		�
��  Newton 

The intensity of electric field at point P, E =
C

	� 

                                                                    =   
�

�πε�
	
�� N/C   (along direction from P to A)     …..(4) 

If the system is placed in a medium of dielectric constant K, then 

                                     E = 
�

�πε��
	
�� N/C   (along direction from P to A)                                …..(5) 

In vector form,  
2

0

1
ˆ

4
q

E r
rπε

=
r

    …..(6) 

Where  r^  is a unit vector pointing from the source charge towards the test charge. 

Equation (6) can be written as- 

E112 = �
�πε�

	
�� r2       (since r^ = 

�12
� )                                                                                          …..(7) 

If the source charge at M is –q, then the direction of the electric field E at point P would have 
been along PM (i.e. towards the charge –q). 
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2.6.2 Due to a System of Point Charges 

If there are n point charges q1, q2, q3,………….qn then each of them will produce the same 
intensity at any point which it would have produced in the absence of other point charge. Hence 

the intensity of the field E112 at a point P due to all the n charges will be equal to the vector sum of 

the intensities 1 2 3, , .....E E E
r r r

…………produced by the separate charges as P- 

or
2

0

1
ˆ

4

n
i

i

i i

q
E r

rπε
= ∑

r
                                                                                                            …..(8) 

Where ri is the distance of P from the charge qi. 

2.6.3 Due to a Continuous Charge Distribution 

If there is a continuous distribution of charge, then the summation in the above expression will 
be replaced by integration. 

If the charge is distributed on a line, then electric field intensity at a point P is- 

2
0

1
ˆ

4
l

dl
E r

r

λ
πε

= ∫
r

….. (9) 

Where λ is the linear charge density ( or charge per unit length) and dl is the length of small 
element. 

If the charge is distributed on a surface, then the electric field intensity at a point P is – 

2
0

1
ˆ

4
S

dS
E r

r

σ
πε

= ∫
r

…..(10) 

Where r is the distance of the point P from a surface element dS and σ is the surface charge 
density (i.e. charge per unit surface area) 

Similarly, if the charge is distributed in a volume, then 

2
0

1
ˆ

4
V

dV
E r

r

ρ
πε

= ∫
r

…..(11) 

Where ρ is the volume charge density i.e. charge per unit volume. 

2.6.4 Physical Significance of Electric Field 

The electric field is a vector quantity which may vary from point to point in magnitude and 
direction. The magnitude of electric field at any point is a measure of electric force on a unit 
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positive test charge, assuming that the test charge does not perturb the field of the system and its 
direction is that of electrostatic force on the test charge. This implies that the electric field is the 
characteristic of the charges of system and is independent of the test charge. The test charge is 
simply introduced for measurement of electric field in a suitable manner. 

The true physical significance of electric field appears only when we keep in view that 
electrostatic interaction is only a part of general fundamental force known as electromagnetic 
interaction. When two charges q1 and q2 are in accelerated motion, then either accelerated charge 
(say q1) produces electromagnetic wave which propagates with speed of light; reaches on another 
charge (say q2) and causes a force on it. 

Thus, the force between two distant charges is not instantaneous but appears with a time delay. 
Thus electric field (as well as magnetic field) is detected by their interaction forces; but they are 
not simply mathematical terms but are regarded as physical quantities which may be measured 
by the forces exerted by them on single charges or diploes. 

2.7 ELECTRIC POTENTIAL 

The electric field produced by a charge can be described in two ways- 

(i) by the intensity of electric field E112 at a point in the field and 
(ii)  by the electric potential V 

The intensity of electric field E112 is a vector quantity while electric potential V is scalar. Both these 
quantities are inter-related. In the study of electric field, the electric potential is an extremely 
important quantity. Both of them are the characteristic properties of a point in the field. 

We know that in an electric field, a free positive charge tends to move along the direction of the 
electric field. When a positive test charge is brought opposite to the direction of electric field, 
work is done against the Coulomb’s force of repulsion. To define absolute potential at any point, 
the potential at infinity is assumed to be zero. 

“The electric potential at any point in an electric field is defined as the work done by 

external force in carrying unit positive test charge from infinity to that point, without any 

acceleration”. 

Let W is the work done in bringing positive test charge q0 from infinity to any point in electric 
field, then electric potential at that point is- 

V = 
N
	�                                                               …..(12) 

The electric potential is a scalar quantity. Its S.I. unit is Joule/Coulomb. It’s another unit is volt. 

If q0 =1 coulomb, W= 1 Joule, then 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 27 

 

V = 
� OPQR


� SPQRPTU = 1 volt 

i.e. 1 volt is the electric potential at a point in an electric field if the work done in bringing one 
coulomb of electric charge from infinity to that point is 1 joule, provided the charge of 1 
coulomb does not affect the original electric field. 

2.7.1 Potential Difference 

Let us define electric potential difference between two points in an electric field. “The ratio of 

work done by external force in carrying a positive test charge from one point to another in 

an electric field is called the potential difference between those points”.  

 

 

                                                                E 

 

                                                                    A                     B                                                                                                      

  

                                                                             Figure 6 

If WBA  is the amount of work done in moving the test charge q0 from B to A against the 
direction of electric field , then the potential difference between points A and B is given by- 

                                               VA – VB = 
NVW

	�                                                                        …..(13) 

or simply ∆ V = 
N
	                                                                                  …..(14) 

Both the work WBA and the charge q0 are scalars, therefore potential difference VA – VB will also 
be a scalar quantity. If in carrying a positive test charge from the point B to the point A, work is 
done by an external agent against the electric force, then the potential of point A is said to be 
higher than the potential of point B. In figure 6, the electric potential of point A is higher than the 
potential of point B. This also means that in an electric field a free positive charge moves from a 
region of higher potential to a region of lower potential. Conversely, a free negative charge 
moves from lower potential to higher potential. 

 If source charge (charge producing the electric field) is –q, then in taking the positive test charge 
q0 from point B to point A work would have been done by the electric force itself. In that case 
the electric potential of the point A would have been lower than the potential of the point B. 
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The unit of work done WBA is Joule and the unit of charge q0 is coulomb. Therefore, the unit of 
potential difference is Joule/Coulomb. 

Now we can define 1 volt potential difference. If WBA= 1 Joule, q0 = 1 Coulomb then 

VA – VB = 
� OPQR


� SPQRPTU  = 1 volt 

i.e. if 1 joule of work is done in carrying a test charge of 1 Coulomb from one point to the other 
in an electric field, then the potential difference between those points will be 1 volt. 

2.7.2 Physical Significance of Electric Potential 

Positive charge always flows from higher potential to lower potential just as a liquid always 
flows from higher pressure ( or higher level) to lower pressure ( or lower level) or heat always 
flows from higher temperature to lower temperature. There is no relation of direction of flow of 
charge with the quantity of charge as in the case of liquid flow or heat flow. Thus, the electric 
potential is that physical quantity which determines the direction of flow of positive charge. 
When we put two conducting bodies of unequal potentials in contact, the charge continues to 
flow from one body to another until their potentials become equal. The positive charge always 
flows from higher potential to lower potential, while negative charge always flows from lower to 
higher potential. When two conductors are kept in contact, the electrons flow from lower 
potential to higher potential until their potentials become equal. 

Example 1:  Compute the electric field intensity at a point 20 cm away in vacuum from an 
electric charge of 4×10-9 C. 

Solution: Given r = 20 cm= 0.20 m, q= 4×10-9 C 
The intensity of electric field E is given as- 

                             E =
�

�πε�
	
�� 

=9×109×
�×�
��
9
.�
;�  = 900N/C 

Example 2:  An electron covers a distance of 60 mm when accelerated from rest by an electric 
field of intensity 2×104 N/C. Calculate the time of travel. (The mass of electron= 9×10-31 Kg, 
Charge on electron = 1.6×10-19 C respectively. 

Solution: Given s= 60 mm= 0.06 m, E = 2×104 N/C, m= 9×10-31 Kg, q= 1.6×10-19 C 

Electric force on electron F = qE = 1.6×10-19×2×104 = 3.2×10-15 N 

Acceleration experienced by electron a = 
C
T = 

:.�×�
��X
8×�
���  = 3.5×1015 m/sec2 

Now, using second equation of motion s = ut +
�
�at2 
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0.06 = 0×t + 
�
� ×3.5×1015 × t2 

or  0.06 = 
�
� ×3.5×1015 × t2 

or t2 = 0.03 ×10-15 = 0.3×10-16 

 or t = 0.54×10-8  sec 

Example 3:  Two point charges of 5×10-19 C and 20×10-19 C are separated by a distance 1 meter. 
At which point on the line joining them, the electric field is zero? If a charge 12×10-19 C is 
placed at this point then what will be the force acting on it? 

Solution: Let the two charges are placed at point P and point Q and the electric field at a point O 
between them is zero. Let the distance of point O from point P is x meter then the distance of O 
from point Q will be (1-x) meter. 

 

                                         P                          OQ 

5×10-19 CE2E120×10-19 

 x meter                       (1-x) meter 

The electric field at point O due to charge at P, E1= 
�

�πε�
	
�� 

                                                                                = 9×109 ×
�×�
���

K�    (along PO ) 

Similarly, the electric field at point O due to charge at Q, E2 = 9×109 ×
�
×�
���

9�?K;�    (along QO) 

Obviously, both electric fields are oppositely directed. If the resultant electric field at O is zero, 
then         E1 = E2 

              9×109 ×
�×�
���

K�  = 9×109 ×
�
×�
���

9�?K;�  

               4x2 = (1-x)2 

            or 2x = ±(1-x) 

            or  2x = (1-x)  or –(1-x) 

            or  x = 1/3 meter  or x = -1 meter 

x =-1 meter is not possible because the point O is between point P and point Q . Therefore x = 
1/3 meter is the distance of point O from point P where the resultant electric field will be zero. 
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Since at point O, resultant electric field E = 0, therefore force on charge 12×10-19 C at point O is- 

F = qE = 12×10-19 ×0 = 0 

i.e. the net force acting on the charge 12×10-19 C at point O is zero. 

Example 4:  If 40 Joule work is done in bringing a charge 4×10-19 C from infinity to a point in 
electric field, what is the potential at that point? 

Solution: Given W = 40 Joule, q = 4×10-19 C 

Using V = 
N
	   = 

�

�×�
��� = 1020 volt 

Example 5: How much work is done in bringing a charge of 2.5×10-6 C from one point to 
another, if the potential difference between the two points is 4 volt? 

Solution: Given  q = 2.5×10-6 C, ∆ V = 4 volt 

Using,  ∆ V = 
N
	  

or  W = ∆ V× q = 4×2.5×10-6 = 10-5 Joule 

Self Assessment Question (SAQ) 1: Calculate the electric field intensity at a point where a 
charge of 5× 10-4 C experiences a force of 2.25 N. 

Self Assessment Question (SAQ) 2:Anα-particle is kept in an electric field of 1.5×105N/C. 
Calculate the force on the particle. 

Self Assessment Question (SAQ) 3:What is the intensity of electric field due to a helium 
nucleus at a distance of 1 A0 from the nucleus? 

Self Assessment Question (SAQ) 4: A point charge of 6×10-8 C is situated at the coordinate 
origin.  How much work will be done in taking an electron from the point x1meter to x2 meter 
where potential difference is 50 volt? 

Self Assessment Question (SAQ) 5: The electric field intensity at a point on the line joining two 
point charges is zero. What conclusion can you draw about the charges? 

Self Assessment Question (SAQ) 6: Calculate the acceleration of an electron in an electric field 
of 9×105 N/C. The charge on an electron is 1.6×10-19 C and its mass is 9.1×10-31 Kg. 

Self Assessment Question (SAQ) 7: In the given diagram, calculate the resultant intensity of 
electric field at the point P due to all charges. The charges are in µC and the distances in cm. If a 
charge 1 µC is placed at point P, what will the force on this charge? Also give the direction of 
force acting on the charge.  
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2.8 ELECTRIC POTENTIAL AS LINE INTEGRAL OF 

ELECTRIC FIELD 

Let us consider a region in electric field. The intensity of electric field at any point is specified 

byE112. Let a positive test charge q0 be displaced from point P to point Q, opposite to the direction 

of electric field. Then the external force on test charge F12 = - q0E112 

 P 

 

YZ11112 E112 

 

 

  Q 

                                                                                 Figure 7 

 

Therefore, the work done in displacing the test charge through a small displacement YZ11112 will be- 

                                                              dW = F12.YZ11112 = - q0E112.YZ11112 

The total work done in displacing the charge from point P to point Q is 

                                                      WPQ = -q0[ E112. YZ11112<
\  
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where the integral extends along the path from P to Q. 

Therefore, the potential difference between two points P to Q will be- 

VQ – VP = 
N]^

	�  = -[ E112. YZ11112<
\ .....(15) 

If the point P is taken at infinity, the reference level for zero potential, i.e. VP = 0, then the 

potential at point Q,   VQ = − [ E112. YZ11112<
_                                                                               …..(16) 

Thus, the electric potential at any point in an electric field is defined as the negative of line 
integral of electric field from infinity to given point. 

2.9 ELECTRIC FIELD AS NEGATIVE GRADIENT OF 

POTENTIAL 

 P                      δr Q 

                          (x, y, z)                                        (x+δx, y+δy, z+δz) 
 
                                                          Figure 8 

Let us consider that V and V + δV are the electric potential at two neighbouring points P and Q 
having coordinates (x, y, z) and  (x+δx, y+δy, z+δz) respectively. 
Since electric potential V is a function of (x, y, z) i.e., V = V (x, y, z), then the potential 
difference between points P and Q may be written in the following general form- 

∆V = 
`�
`K ab + `�

`d ae + `�
`f ag  

Or, ˆ ˆˆ ˆ ˆ ˆ( ).( ) .
V V V

i j k i x j y k z V dr
x y z

δ δ δ
∂ ∂ ∂

+ + + + = ∇
∂ ∂ ∂

r r
…..(17) 

If E112 is the electric field intensity in the region of points P and Q, then by definition, the potential 

difference between two points P and Q separated by distance ˆˆ ˆ( )r i x j y k zδ δ δ δ= + +
r

 is given 

by- 

∆V = - E112 . δr1112                                                                      …..(18) 
Comparing equation (17) and equation (18), we get- 

                                                 - E112 . δr1112 = ∇V. δr1112 

or                                              (E112 + ∇V ).δr1112 = 0 

Since δr1112 is arbitrary, we must have- 

0E V+∇ =
r r

 

or E V= −∇
r r

= - grad V                                   …..(19) 
Thus, the electric field intensity at any point is equal to the negative gradient of the potential at 
that point. 
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Equation (19) can be written in terms of components as- 

ˆ ˆˆ ˆ ˆ ˆ( )x y z

V V V
E iE jE kE i j k

x y z

∂ ∂ ∂
= + + = − + +

∂ ∂ ∂

r
    …..(20) 

Comparing coefficients, we get- 

Ex = - 
`�
`K,  Ey = - 

`�
`d ,   Ez = - 

`�
`f                                        …..(21) 

In general,                            E = - 
B�
B� 

2.10 CALCULATION OF ELECTRIC POTENTIAL 

In this section, we shall calculate the electric potential in different cases. Let us discuss one by 
one. 

2.10.1 Due to a Point-charge 

Let us consider a charge of +q coulomb is placed at a point O (as shown in figure) in air ( or 
vacuum). Let P is the point at which the electric potential is to be calculated. The distance of 
point P from O is r. 

                                        +q                                                                              +q0 

  F 

                                        O                                                       P                B    A 

            r                                                   dx  

x 

                                                                                         Figure 9 

Let a test charge +q0 is placed at point A, distant x from point O and away from point P.  

By Coulomb’s law, the electric force acting on q0 is given by- 

                                                           F = 
�

�πε�
		�
j�     (along OA ) 

Let us consider another point B at a distance dx from point A towards O ( i.e. at a distance –dx 
from A ). Then the work done in bringing the test charge +q0 from point A to point B against the 
force F is- 

       dW = F12. Yb11112  = F dx cos1800 

    = - 
�

�πε�
		�
j�  (dx)  = - 

�
�πε�

		�
j�  dx 
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Therefore, the total work done in bringing the test charge +q0 from infinity to P is- 

 W = [ k− �
�πε�

		�
j�  dxnA

_  = − �
�πε�q q0[ k− Bj

j�nA
∞

 

                                              = − �
�πε�q q0o�

Kp_
A

 = − �
�πε�q q0o�

A − �
_p 

                                              = 
�

�πε�
		�

�  

 By definition, the electric potential at point P, 

V = 
N
	�  = 

�
�πε�

	
� 

or                                            V = 
�

�πε�
	
�                                                                          …..(22) 

If the system is in a medium of dielectric constant K, then 

                                             V = 
�

�πε��
	
�                                                                          …..(23) 

Similarly, the electric potential at point P due to a charge –q is given as- 

                                                     V = − �
�πε��

	
�                                                              …..(24) 

2.10.2 Due to a system of point charges 

Electric potential, being a scalar quantity, has no direction. Therefore, the electric potential at 
any point due to a group of point charges is found by calculating the potential due to each charge 
and then adding algebraically the quantities so obtained. 

                                                                              P 

 r1                                    r4 

 +q1 r2                  r3 

 -q4 

 -q3 

   +q2 

                                                                            Figure 10 

If a point P is at distances r1, r2, r3, r4 ……… from the point charges +q1, +q2, -q3, -
q4,………respectively, then the resultant electric potential at that point will be- 
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V = 
�

�πε� oJ�
A�  + J�

A� − J�
A� − Jq

Aq … … … … . . p…..(25) 

If there are n point charges, then the electric potential due to them at a point P will be- 

0

1

4

n
i

i i

q
V

rπε
= ∑ …..(26) 

Where ri is the distance of the point from the charge qi. 

2.10.3 Due to a continuous charge Distribution 

If the charge distribution be continuous, then the summation in the above expressions will be 
replaced by integration i.e. 

                                                              V = 
�

�πε� [ B	
�                                                       …..(27) 

Where dq is a differential element of the charge distribution and r is its distance from the point at 
which V is to be calculated. 

If the charge distribution is linear charge of charge per unit length (λ), then the charge on length 
element dl is dq = λ dl, then  

                                                               V = 
�

�πε� [ sBR
� …..(28) 

If the charge is distributed continuously over an area S, then dq = σ dS, where σ is surface 

density of charge. Then, we have  V = 
�

�πε� [ [ tBu
�                                                          …..(29) 

Where integral is surface integral. 

Similarly, if the charge is distributed continuously within a volume V, then 

                                                           V = 
�

�πε� [ [ [ vB�
�                                                  …..(30)    

Where ρ is the volume charge density and integral is volume integral.                 

Example 6:Calculate the electric potential due to pint charge +1.1×10-9 C at a distance of 100 
mm. 

Solution: Given, q = +1.1×10-9 C, r = 100 mm = 0.1 m 

Using  V = 
�

�πε�
	
�, the electric potential V = 9×109 ×

�.�×�
��

.�  

                                                                  = +99 V 
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Example 7:Two point charges + 6 µC and -2 µC are 0.8 m apart. Locate the point at which the 
electric potential is zero. 

Solution:  Let us suppose that at point P, the electric potential is zero. Let the distance of  point P 
from charge + 6 µC is x. Obviously, the distance of point P from charge will be (0.8-x) m. 

 

                                                                P 

                                         + 6 µC                                             -2 µC 

 x                       (0.8-x) 

The electric potential at point P due to charge + 6 µC is,  V1 = 
�

�πε�
	
� 

                                 = 9×109 ×
�×�
�w

x   V 

Similarly, the electric potential at point P due to charge -2 µC,  V2 = 9×109 ×
9?�;×�
�w

9
.y?x;  V 

                                                                                                         = - 9×109 ×
�×�
�w
9
.y?x; 

Since the electric potential at P is zero, it means the algebraic sum of V1 and V2 should be zero 
i.e,  V1 + V2 =0 

or                                   9×109 ×
�×�
�w

x  - 9×109 ×
�×�
�w
9
.y?x; = 0 

or                                                        
:
K = 

�
9
.y?K; 

or                                                      x = 0.6 m. 

Example 8: Determine the value of VA- VB in the given arrangement. 

 x A   y       B    x 

                                     +q                                            -q 

Solution: x       A   y      B     x 

 +q                                           -q 

 The electric potential at point A due to charge +q, V1 = 
�

�πε�
	
� = 9×109 ×

	
x 
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Similarly, the electric potential at A due to charge –q, V2 = 9×109 ×
9?	;

9jz{; = - 9×109 ×
	

9jz{; 

Total electric potential at point A, VA = V1 + V2 = 9×109 ×
	
x - 9×109 ×

	
9jz{;= 9×109 ×[

	
x - 

	
9jz{; ]  

Similarly, the electric potential at point B due to charges +q and –q are 9×109 ×
	

9jz{; and - 9×109 

×
	
x respectively. 

The total electric potential at point B, VB = 9×109 ×
	

9jz{;- 9×109 ×
	
x. = 9×109 ×[

	
9jz{; − 	

x] 

Therefore, VA – VB = 9×109 ×[
	
x - 

	
9jz{; ] - 9×109 ×[

	
9jz{; − 	

x] 

                                = 9×109 ×[
	
x - 

	
9jz{; - 

	
9jz{; + 	

x] = 9×109 ×
�Jd

K9Kzd; 

or                          VA – VB = 
�

�πε�
�Jd

K9Kzd; 

Self Assessment Question (SAQ) 8: The electric field intensity is zero at a point. Will the 
electric potential be necessarily zero at that point? 

Self Assessment Question (SAQ) 9: The electric potential is constant throughout a given region 
of space. What is the electric field intensity in that region? 

2.11 THE ELECTRIC FLUX 

The electric flux through a surface is defined as the total number of electric lines of force passing 
through that surface normally. 

 

   

E112                                       θ              dS11112 

 

 

 

                                                                       Figure 11 

The electric flux through an elementary area dS is defined as the dot product (or scalar product) 
of electric field and the surface area i.e.   
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                                         Electric flux d∅ = E112 . dS11112 …..(31) 

Let θ be the angle between the direction of electric field E112  and the direction of surface area dS11112 
then,       d∅ = E dS Cosθ                                                                                       …..(32)   

The total electric flux through entire surface ~2is obtained by adding up the scalar quantity E112 . dS11112 
for all elements of area into which the surface has been divided. 

Thus the total electric flux ∅ = ∑E112 . dS11112                                                                            …..(33) 
If the surface is continuous and electric field is different at different surface elements, then 
summation in equation (33) is replaced by integration, therefore the total electric flux through the 

entire surface, .
S

E dSφ = ∫
rr

   …..(34) 

Electric flux is a scalar quantity. Its unit is Newton-metre2Coulomb-1. 

2.12 THE GAUSS’S THEOREM 

Karl Friedrich Gauss gave a theorem that relates total outward electric flux through a 
hypothetical closed surface. This theorem is known after his name Gauss’s theorem. The 
hypothetical closed surface is called Gaussian surface. 
Gauss’s theorem states that the net outward normal electric flux through a closed surface of any 
shape is equal to 1/ε0 times the total charge contained within that surface, i.e. 

0

1
.

S

E dS q
ε

= ∑∫
rr

          …..(35) 

Where
S

∫ indicates the surface integral over whole of the closed surface, ∑q is the algebraic sum 

of all the charges (i.e. net charge in coulombs) enclosed by the surface S. 
Proof:Let us first proof Gauss’s theorem for internal point. 
Direction of normal 

dωdS11112         θ 

  E112 

 +q P 

 

 

 

     O                                                                                                   

                                                                                     Figure 12 
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Let a point charge +q coulomb be placed at point O within the closed surface. Let E112 be the 
electric field intensity at point P. Let OP = r and the permittivity of the free space or vacuum be 
ε0. 

Let us consider a small area dS11112 of the surface surrounding the point P. The electric flux through 

dS11112 is- 

                                         d∅ = E112 . dS11112                                                                       …..(i) 

Electric field intensity at point P, E112 = 
�

�πε�
	
�� r^ = 

�
�πε�

	�12
�� 

Therefore, from equation (i),    d∅ = 
�

�πε� q
A2.��111112
A�                                                        …..(ii) 

But 
A2.��111112
A�  = 

������
A�  = solid angle subtended by area dS at point O.  

      θ = angle between E112 and dS11112 

From equation (ii), we get- 

                                    d∅ = 
�

�πε� q   dω = 
	

�πε�  dω 

Hence electric flux through entire closed surface- 

∅  = ∫SE112 . dS11112 = 
	

�πε�∫dω                                                               …..(iii) 

But ∫dω is the solid angle due to the entire closed surface S at an internal point O = 4π 

Therefore, from equation (iv), ∅ = 
	

�πε� 4π = 
�
�� � 

If there are many charges +q1, +q2, +q3, ………-q1’, -q2’, -q3’,……….inside the closed surface, 
each charge will contribute to the electric flux. For positive charges, the flux will be outward and 
hence positive; for negative charges, the flux will be inward and negative. Therefore, the total 
electric flux in such a case is-  

∅ = 
�
�� q1 + 

�
�� q2 + 

�
�� q3 +……….  -  

�
�� q1’ - 

�
�� q2’ - 

�
�� q3’ -……….. 

                                           = 
�

�� (q1 +  q2 + q3 +……….  -   q1’ -  q2’ -  q3’ -………..) 

                                            = 
�
��∑q 
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Thus ∅ = 
�
��∑q 

Where ∑q is the algebraic sum of the charges within the closed surface. 

Hence, net electric flux through a closed surface is equal to 
�

��  times the total charge ( in 

coulomb) enclosed within the surface which is Gauss’s theorem. 

Now let us proof Gauss’s theorem for external charge. 

Let us consider a closed surface S enclosing no charge, charge q is placed at the external point O.  
We construct a cone of lines of force from charge q to cut the surface. The surface of any shape 
is intersected in an even number of patches ( here 2); the contribution to electric flux due to these 

intersecting surfaces are - 
	

�πε�  dω and + 
	

�πε�   dω, therefore that flux through the surface is 

zero.Hence, charges external to Gaussian surface do not contribute to electric flux. Thus, Gauss’s 

theorem ∫SE112 . dS11112 = 
�

�� × charge enclosed by surface, is true whether external charges are present 

or not. 

 

 

 E2 

dω 

                          q 

                           O 

 E1 

S 

                                                                               Figure 13 

If the system is in a medium of dielectric constant K, then Gauss’s theorem can be written as- 

∫SE112 . dS11112 = 
�
�∑q 

                                                    = 
�

ε��∑q                                                                   …..(36) 

It is to be noted that Gauss’s theorem remains valid as such even for charges in motion. 
Moreover it is applicable to any field obeying inverse square law. 
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2.13 APPLICATIONS OF GAUSS’S THEOREM 

It is very interesting that that Gauss’s theorem provides a convenient method for determination 
of electric field intensity in symmetrical cases. Here, we consider a imaginary Gaussian surface 
symmetrical to given charge, compute electric flux through this Gaussian surface and equate this 

flux to 
�

�� × charge enclosed by the surface. Now let us discuss some important applications of 

Gauss’s theorem. 

2.13.1 Electric Field due to a Point-charge 

Let us consider a point charge q coulomb placed at point O. We have to find out the electric field 
intensity due to this charge at a point P distant r from it. Let us consider a closed spherical 

surface with centre at O and the point P lying on it. By symmetry the electric field E112 has the 
same magnitude all over the surface and points everywhere normally outwards. 

 

 

 

 P 

  E112 

 dS11112 

 

S 

 

                                                                               Figure 14 

 

Electric flux through the spherical surface, ∅ = ∫SE112 . dS11112 = ∫S E dS Cosθ 

                                                                        = E ∫SdS = E (4π r2) 

(Since ∫SdS = 4π r2, total surface area of sphere) 

Charge enclosed by the surface = q 

 

                  +q 

                  O                  r 
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According to Gauss’s theorem,  

∫SE112 . dS11112  = 1/ε0∑q       

E (4π r2) = 
�

�� q 

or                                            E = 
�

����
J

A� 

In vector form, we can write- 

E112 = 
�

����
J
A� r^ = 

�
����

J
A� Z2 

This is the expression for electric field intensity due to a point charge using Gauss’s theorem. 

2.13.2 Electric Field due to a charged spherical shell 

Let us consider a thin spherical shell of radius R and carrying charge Q with centre O. Let us first 
calculate the electric field outside the charged spherical shell. 

 

 �12
 

 P 

  

 R                    rr 

                                                                       O  +q 

 Gaussian surface 

 

         Figure 15 

Let us consider a point P at a distance r outside the shell. Let us draw an imaginary spherical  
surface of radius r = OP, concentric with the shell. By symmetry the electric field E0 at each 
point of surface is same and is directed radially outward. Let the value of electric field at the 
surface be E0. 

The net electric flux through the entire surface, ∅ = ∫S�12� . dS11112 = ∫S E0 dS Cos0 

                                          r 
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  =   ∫s E0 dS = E0 ∫S dS = E0 4π r2       (Since ∫SdS = 4π r2, total surface area of sphere ) 

Total charge enclosed by the surface = + q 

Using Gauss’s theorem, ∅ =  ∫SE112 . dS11112 = 1/ε0∑q       

                                            E0 4π r2  =  1/ε0∑q         

        or                                       E0 = 
�

����
<
A� 

Which is same if the charge Q was kept at the centre O. Hence the electric field intensity at a 
point outside a charged spherical shell is same as though the charge was kept at the centre O. 

Now, let us calculate the electric field inside the charged spherical shell. For this, let us consider 
a point P’ inside the shell at a distance of r i.e. r < R. Let us draw an imaginary Gaussian surface 

of radius r( r = OP’), concentric with the shell. If �12� is the electric field inside the shell, then by 

symmetry �12� is same at each point of spherical surface and is directed radially outward.  

 

 

 

 

 

 

 

 

                                                                               Figure 16 

 

Net electric flux through the surface, ∅ = ∫S�12� . dS11112 = ∫S Ei dS Cos0 

                  =   ∫s Ei dS = Ei ∫S dS = Ei 4π r2       (Since ∫SdS = 4π r2, total surface area of sphere ) 

 

                             r          P’ 

                   O                       R 
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Total charge enclosed by the surface ∑q = 0 

Therefore, using Gauss’s theorem, we have- 

                                               ∅ =  ∫SE112 . dS11112 = 1/ε0∑q       

                                          Ei 4π r2    = 0 

or                                       Ei = 0 

Thus electric field intensity at each point within the shell is zero. 

Example 9:How much electric flux will come out through surface Y~11112 = 5 k^ kept in an electric 

field �12 = 3i^ + 7j^ + 4k^ ? 

Solution: Here Y~11112 = 5 k^, �12 = 3i^ + 7j^ + 4k^ 

Electric flux , ∅ =   E112 . dS11112 = (3i^ + 7j^ + 4k^). 5 k^ 

                          = 20 units 

Example 10:1 coulomb charge is kept at the centre of a cube of side 5 cm. Find out the electric 
flux coming out of any face of the cube. 

Solution:  Given q = 1 coulomb ( the charge enclosed by the surface) 

Net flux through the cube, ∅ = 1/ε0 × total charge enclosed by the surface       

                                             = 1/ε0 × 1 = 1/ε0 

Cube has six faces. By symmetry the electric flux through each of cube face will be same. Hence 

the electric flux through a face of cube= 
�
�×1/ε0 = 

�
��� = 1.884 × 1010 N-m2/C2 

Self Assessment Question (SAQ) 10:A charge q is kept at the centre of a cube of side ‘a’. What 
is the electric flux through any one face of cube? 

Self Assessment Question (SAQ) 11: Choose the correct option- 

The electric field intensity inside a spherical shell is- 

(a) Always zero           (b) sometimes zero         (c) infinite        (d) none of these  

Self Assessment Question (SAQ) 12: State True or False- 

Gauss’s law is basically equivalent to Coulomb’s law. 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 45 

 

2.14 SUMMARY 

In the present unit, we have studied the concept of electric field, electric lines of force and their 
properties. We learnt that an electric line of force is that imaginary smooth curve drawn in an 
electric field along which a free, isolated unit positive charge moves. The tangent drawn at any 
point on the electric line of force gives the direction of the force acting on a positive charge 
placed at that point. We have also learnt that no two electric lines of forces can intersect each 
other.  We have established the expressions for electric field intensity and electric potential due 
to a point charge, a system of point charges and continuous charge distribution. We have studied 
and analysized  the physical significance of electric field intensity. In the present unit, we have 
learnt about electric potential and electric potential difference. We have learnt that the electric 
field intensity at any point is equal to the negative gradient of the potential at that point. In the 
present unit we have learnt that the electric flux through a surface is defined as the total number 
of electric lines of force passing through that surface normally. We have studied and proved 
Gauss’s theorem in electrostatics. We have derived some expressions for electric field intensity 
using Gauss’s theorem. Several solved examples are given in the unit to make the concepts clear. 
To check your progress, self assessment questions (SAQs) are given place to place. 

2.15 GLOSSARY  

Experience- occurrence 

Set-up- arrangement 

Perturb- disturb, agitate 

Characteristic- properties 

Independent- autonomous, free 

Significance- implication, importance 

Exert- apply, put forth, bring to bear 

2.16 TERMINAL QUESTIONS 

1. Give the concept of electric field. 

2. Draw electric lines of force due to an isolated negative charge. 

3. Define electric lines of force and discuss their important properties. 

4. Two electric lines of force never intersect each other. Why? 

5. Establish the expression for electric field intensity at a point due to a point charge. 
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6. Explain the physical significance of electric field intensity. 

7. Define potential difference between two points. Hence define electric potential at a point. 

8. A charge +7 × 10-19  C  is moved between two points. The potential difference between those   
points is zero. Estimate the work done in this process. 

9.  What is the physical significance of electric potential? 

10. Prove that the electric potential is the negative of line integral of electric field. 

11. Give the derivation of the electric field from electric potential. 

12. Prove, �12 = - grad V 

13.  How does the electric potential due to a point charge vary with distance? 

14. Establish an expression for electric potential due to a point charge. 

15. Calculate the electric potential at the centre of a square of side ‘a’ which carries at its four    
corners charges q1, q2, q3 and q4.  

16. What is electric flux? What is its unit? Give its significance. 

17. State and proof Gauss’s theorem in electrostatics. 

18. Using Gauss’ theorem, prove that the electric field intensity due to a charged spherical shell 
at a point outside the shell is given by- 

     E0 = 
�

����
<
A� , where Q is the charge on shell and r is the distance of a point outside from the     

centre of shell. 

19.  Establish the expression for electric field intensity due to a point charge at a distance r as an 
application of Gauss’s theorem. 

2.17 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given q = 5× 10-4 C, F = 2.25 N 
Using F = qE, the intensity of electric field E = F/q = 2.25/5× 10-4  = 4.5×103 N/C 

2. Given E = 1.5×105 N/C, we know that the charge on α-particle q = +3.2×10-19 C 
Using F = qE, the force on α-particle F = 3.2×10-19×1.5×105 = 4.8×10-14 N 

3. The helium nucleus has a positive charge equal to that on an α-particle i.e. the charge on 
helium nucleus q = + 3.2×10-19 C, here r = 1 A0 = 10-10 meter 
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We know that   E =
�

�πε�
	
�� 

                                  =9×109×
:.�×�
���

9�
;���  = 2.88×1011 N/C 

4. Here,  q = 6×10-8 C, ∆V = 50 volt 

Using ∆ V = 
N
	 , the necessary work w = q ∆V = 6×10-8 ×50 = 3×10-6 Joule  

5. We can conclude that the charges are similar. 
6. Here q = 1.6×10-19 C, m= 9.1×10-31 Kg, E = 9×105 N/C 

Electric force on electron F = qE =1.6×10-19 × 9×105 = 1.44×10-13 N  
Now F = ma or a = F/m = 1.44×10-13/9.1×10-31 = 1.58×1017 m/sec2 

 
7. +5µC                             8 cm               -3.6µC 

A B 
 θ 
 
 Y 
                  10 cm 6 cm 
 
 E2 

X 
 P θ 
    E1 
 

  

The electric field intensity at point P due to charge +5µC, E1 = 
�

�πε�
	
�� 

                                                                      = 9×109 ×
�×�
�w

9�
×�
��;� = 4.5×106 N/C  (along AP) 

Similarly, the electric field intensity at point P due charge -3.6µC, E2 = 9×109 ×
:.�×�
�w

9�×�
��;� 

                                                              = 9×106 N/C  (along PB) 

Let us resolve E1 and E2 into its components considering origin at P and X-axis and Y-axis as 
shown in figure. 

Resultant electric field intensity along X-axis, Ex = E1x+E2x 

                                                                              = (4.5×106 cos θ) + 0 

                                                                            = (4.5×106 ×
y

�
) = 3.6×106 N/C 
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Similarly, total electric field intensity along Y-axis, Ey = E1y+ E2y 

                                                                                        = ( - 4.5×106 sin θ) + (9×106) 

                                                                                      = ( - 4.5×106× 
�

�
) + (9×106) 

                                                                                     = 6.3×106 N/C 

Resultant electric field intensity at point P, E = �Ej� + E{� 

                                    = �93.6 × 10�;� + 96.3 × 10�;� = 7.3×106 N/C 

If the resultant electric field intensity at P makes an angle θ with +X-axis, then θ = tan-1��
��

 

 = tan-19�.:×�
w
:.�×�
w; = tan-1( 1.75) 

The force on 1µC placed at point P, F = qE= 1×10-6×7.3×106 = 7.3N (in the direction of E) 

8. The electric field intensity is zero at a point exactly midway between two equal and similar 
charges, but the electric potential at that point is twice that due to a single charge. Therefore, 
the electric potential will not be necessarily zero at that point. 

9. We know that E = -
B�
B�  

But V is constant throughout a given region space i.e. V is constant with r. Therefore,
B�
B�  = 0 

and hence E is zero. 
10.  Total charge enclosed by the surface = q 

      Net flux through the cube, ∅ = 1/ε0 × total charge enclosed by the surface       

                                             = 1/ε0 × q = q/ε0 

Cube has six faces. By symmetry the electric flux through each of cube face will be same. 

Hence the electric flux through a face of cube= 
�
�×q/ε0 = 

J
��� 

11.   (a)  
12.  True 

Terminal Questions: 

8.  The potential difference between two points is zero i.e. ∆V = 0 

     The work done in the process W = q ∆V = q × 0 = 0 
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13. Since V = 
�

�πε�
	
�  i.e. V α 

�
A 

Obviously, the electric potential is inversely proportional to distance. The magnitude of   
electric potential increases with decrease in distance. 

15.                                                                            a 

                                                       q1 q2 

 

 a a 

  

  q4 q3 

 a 

    The length of diagonal of square = a√2 

    The half of the length of diagonal = a√2 /2 = a/√2 

    The electric potential at the centre C due to charge q1, V1 = 
�

�πε�
	�

k �
√�n 

    The electric potential at the centre C due to charge q2, V2 = 
�

�πε�
	�

k �
√�n 

   The electric potential at the centre C due to charge q3, V3 = 
�

�πε�
	�

k �
√�n 

   The electric potential at the centre C due to charge q4, V4 = 
�

�πε�
	q

k �
√�n 

   The total electric field at the centre of square V = V1 + V2 + V3 + V4 

  = 
�

�πε�
	�

k �
√�n + 

�
�πε�

	�
k �

√�n + 
�

�πε�
	�

k �
√�n + 

�
�πε�

	q
k �

√�n 

                                               = 
�

�πε�
√�
�  [q1+ q2+ q3 + q4] 
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3.1 INTRODUCTION 

In the previous unit, you have learnt about electric field, electric lines of force and their 
properties. You have calculated electric field intensity and potential due to a point charge, a 
system of point charges and a continuous charge distribution. You have also studied electric flux, 
Gauss’s theorem and applications. In the present unit, you will study, calculate, learn and analyze 
the electric potential and electric field due to an arbitrary charge, long charged wire, sphere and 
disc. You will also study about electric dipole and calculate the electric field intensity and 
potential in different cases of electric dipole. In this unit, you will learn also about energy stored 
in an electric field. 

3.2 OBJECTIVES 

After studying this unit, you should be able to- 

• learn about electric potential and electric field due to various bodies 
• learn about electric dipole 
• compute electric field intensity and electric potential in various cases 
• solve problems based on electric field, electric potential and electric dipole 

3.3 ELECTRIC FIELD INTENSITY AND POTENTIAL DUE TO 

AN INFINITELY LONG CHARGED WIRE 

Let us consider a section of an infinitely long straight wire charged uniformly. Let the linear 
charge density ( i.e. charge per unit length) of wire be λ C/m. 

E112 

                                                                   P                   S3 

r  

 

                               S1                                                                                                                       S2 

 

l 

                                                                       Figure 1 

Let us consider an imaginary cylindrical surface (Gaussian surface) of radius r and length l co-
axial with the line charge and enclosed by two flat circular surfaces perpendicular to the line 
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charge. By symmetry the electric field intensity E112 is equal in magnitude and is directed normally 
at every point of the curved cylindrical surface. Obviously, there are three closed surfaces- two 
flat surfaces S1 and S2; one curved cylindrical surface S3. 

Applying Gauss’s theorem- 

∫SE112 . dS11112  = 1/ε0∑q                    

or                            ∫S1E112 . dS11112  + ∫S2E112 . dS11112   + ∫S3E112 . dS11112         = 1/ε0∑q             

or      ∫S1 (E dS Cos 900) + ∫S2 (E dS Cos 900) + ∫S3 (E dS Cos 00) = 1/ε0∑q             

or                  0 + 0 +  E ∫S3 dS = 1/ε0( λ×l)         [ since total charge ∑q = λ×l ] 

or                                 E ( 2π r l)  = 1/ε0 × λl      [ since ∫S3 dS = 2π r l= total curved surface area] 

or                    E =
�

�πε�
�λ

�                                                                           …..(1) 

The equation (1) gives the electric field intensity due to an infinitely long charged wire at a 
distance r. 

Now let us calculate electric potential due to an infinitely long charged wire. In the previous unit, 
we have learnt that the electric potential at a distance r from the axis is given as- 

Vr = − [ E112. YZ11112A
_                                                    …..(2) 

Here at infinity (reference level), the potential is taken as zero. But in this case, reference 
distance cannot be taken as infinity since the wire itself extends to infinity. Hence in this case, 
we shall find the potential difference between two points distant r1 and r2 from the wire. We 

know that Potential difference   VB – VA = 
N]^

	�  = -[ E112. YZ11112<
\ …..(3) 

Using above relation, we have the electric potential difference  ∆V = -[ E112. YZ11112A�A�  

                                                              = -[ E drA�A�  Cos 00 = -[ E drA�A�  

                                                              = -[ �
�πε�

�λ

� drA�A�  = 
�

���� 2� ���� A�
A� 

                                                                = 
�

���� ���� A�
A� 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 54 

 

Or potential difference   ∆V = 
�

���� ���� A�
A�                                                            …..(4) 

The above expression gives the potential difference ∆V (or Vr1- Vr2) between two points distant 
r1 and r2 . 

3.4 ELECTRIC FIELD INTENSITY DUE TO CHARGED 

SPHERE 

Let us consider a non-conducting sphere of radius R. The charge Q is uniformly distributed over 

it. The charge density of sphere ρ = 
D

q
�π��                                                                                …..(5) 

P is the point at a distance r from the centre of sphere at which electric field intensity is to be 
determined. Now let us discuss different cases as follows- 

Case (i) Point P lies outside the charge distribution, at external point ( r >R ) 

 

 Gaussian Surface 

 

 

                                                                           R dS11112 

       O         r                   P  EP11112 

 

 

 

Figure 2 

Obviously, OP = r. Let us draw a spherical surface (Gaussian surface) of radius OP = r 
concentric with the spherical surface. As the electric charge is uniformly distributed, by 
symmetry the electric field intensity EO at every point of this spherical surface has the same 
magnitude and is directed along the outward drawn normal to the entire surface. 

Total electric flux through the entire surface = ∫SE�11112 .dS11112 = ∫S EO dS Cos 00 

                                             = ∫S EO dS = EO ∫SdS 
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              = EO ( 4πr2)            [ since ∫SdS = total surface area of spherical surface = 4πr2 ] 

Total charge enclosed by the Gaussian surface = Q  

Using Gauss’s theorem- 

∫SE112 . dS11112  = 1/ε0∑q                    

                                             EO ( 4πr2)  =1/ε0× Q 

                                             EO = 
�

�πε�
D
��                                                                                …..(6) 

This is the same if the charge Q was placed at the centre of sphere O. Hence, the electric field 
intensity at any point outside a spherical charge distribution is the same as through the whole 
charge were concentrated at the centre. 

Case (ii) Point P lies on the surface of spherical charge distribution (r= R) 

If point P is on the surface of spherical charge distribution, then r = R i.e. the distance of point P 
from the centre of sphere is equal to the radius of sphere. In this case, the electric field intensity 
on the surface of the spherical charge distribution is given as- 

                                                          ES = 
�

�πε�
D

��                                                                  …..(7) 

Case (iii) Point P lies inside the charge distribution, at internal point(r<R) 

Let point P is inside the spherical charge distribution. The distance of point P from the centre of 
sphere is r. 

 

 

E�1112 

R  P     d             

                                                                          O     dS11112 

                                                                                               r 

 

                         Figure 3 
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Let us consider a sphere of radius r concentric with spherical charge. Let the whole surface be 
divided into thin concentric shells. The electric field intensity at point P is the combined effect of 
shells outside P as well as those inside P. But we know that the electric field intensity due to 
outer shells is zero. Thus, the electric field intensity at point P is due to inner shells only.  

By symmetry the electric field intensity Ei at every point of the spherical surface of radius r has 
the same magnitude and directed along the outward drawn normal to the surface. 

The total electric flux through the entire surface = ∫SE�1112 .dS11112 = ∫S Ei dS Cos 00 

                                             = ∫S Ei dS = Ei ∫SdS 

              = Ei ( 4πr2)            [ since ∫SdS = total surface area of spherical surface = 4πr2 ] 

Total charge enclosed by Gaussian surface, Q’ = charge enclosed by a spherical core of radius r 

                                                                     =Volume of spherical core × volume charge density 

                                                                    = 
�
: �Z:ρ 

Using Gauss’s theorem- 

∫SE�1112 . dS11112  = 1/ε0×Q’ 

                                             Ei ( 4πr2)  =1/ε0× (
�
: πr:ρ) 

                                             Ei = 
�

�πε�
q
�π��ρ

��  

                                                 =
�

�πε�
q
�π��

�� × D
q
�π��          [Since  ρ = 

D
q
�π��     equation (5) ] 

 or                                        Ei = 
�

�πε�
D�
��                                                                                  …..(8) 

Therefore, the electric field intensity at internal point of a spherically symmetric charge 
distribution is directly proportional to the distance of the point from the centre of spherical 
charge. 

 We have observed that the electric field intensity outside the charge distribution is inversely 
proportional to the square of the distance of the point from the centre of spherical charge. In this 

way, the electric field intensity is maximum at the surface of the spherical charge equal to 
�

�πε�
D

��. 

The variation of electric field intensity due to a uniformly charged non-conducting sphere is 
shown in the following figure 4 
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                                              E 

 

                                             ES ES = 
�

�πε�
D

�� 

      EO α 
�
�� 

                                                    Ei α r 

 O  r 

                                                                     R 

 

 

 

 

 

. 

                                                                     Figure 4 

3.5 ELECTRIC POTENTIAL DUE TO A CHARGED SPHERE 

Let us consider a uniformly charged spherical volume of radius R containing charge Q. The 

volume charge density, ρ = 
D

q
�π��. Let us learn and discuss the electric potential due to a charged 

sphere in various cases. 

Case (i) At external point of spherical volume (r >R) 

Let us consider a point P outside the spherical volume at a distance r > R.  

 

 

 

 

R    
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 P 

 

 R 

 

                                                                         Figure 5 

The electric field intensity at point P is given 

1 2
0

1
ˆ

4

Q
E r

rπε
=

r
 

The electric potential at point P, 

  V = -[ E�1112�
∞

.dr11112 = -[ �
����

�
∞

D
�� r�.dr11112 

                                                      = - 
D

�πε� [ r?�dr�
∞

 = - 
D

�πε� oA��
?� p_

A
 = 

�
�πε�

D
�                          …..(9) 

This expression is same as that of electric potential due to a charge placed at the centre O. In this 
way, for external points the spherical charge behaves as if the entire charge were concentrated at 
the centre of the spherical charge. 

Case (ii) Inside the spherical charge i.e. at internal point ( r < R ) 

Let us consider a point P’ inside the spherical charge at a distance r from the centre O at which 
electric potential is to be determined. 

 

 

 

 

 

 

                                                                               Figure  6 

R 

O 

R                

           r 

O         P’ 
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We have calculated the electric field intensity due to a uniformly charged non-conducting sphere 
at external and internal points as- 

��11112 = 
�

�πε�
D
�� r�    and � 1112 = 

�
�πε�

D�
�� r� 

The electric potential at point P’ at a distance r < R from the centre is given by- 

                                   V = -[ E112�
∞

.dr11112 = - [[ E�11112�
∞

.dr11112 + [ E�1112�
� .dr11112 ] 

Putting for E�11112 and E�1112 in the above expression, we get- 

                                  V = - [[ �
�πε�

D
�� r��

∞
.dr11112 + [ �

�πε�
D� 
��

�
� r�.dr11112 ] 

                                     = - 
�

�πε� [[ D
�� r��

∞
.dr11112 + [ D� 

��
�

� r�.dr11112 ] 

                                      = - 
�

�πε� [[ D
�� dr�

∞
 + [ D� 

��
�

� dr ]       [Since r�. dr11112 = 1× dr × Cos 00 = dr ] 

                                      = - 
�

�πε� Q [[ �
�� dr�

∞
 + 

�
¢� [ r�

� dr ]= - 
�

�πε� Q [-k�
�n

∞

�
+ 

�
��

�
� 9r�;�� ] 

V = 
�

�πε� Q [
:¢�? A�

�¢� ]…..(10) 

This is the expression for electric potential at internal point. 

3.6 ELECTRIC POTENTIAL DUE TO A CHARGED DISC  

Let us consider a flat insulating disc of a radius ‘a’ carrying a positive charge Q spread uniformly 
over its surface. Let σ be the surface charge density of the disc. The disc considered here is non-
conducting because if it is conducting, it would become a surface of constant potential and not 
that of uniform charge as the charge on the conducting disc would redistribute itself, crowding 
more towards the rim of the disc. 

Let us calculate electric potential due to a charged disc. 

Case (i) At point on the axis of symmetry 

Let us consider a point P on the axis of symmetry at a distance x from the centre of the disc.  Let 
us suppose that the disc is formed of a large number of thin concentric ring shaped elements. Let 
us consider one such ring shaped element of radius y and thickness dy.  

The area of the ring element = circumference × thickness of the ring element = 2π y dy 

The charge on the ring element dq = surface charge density × area of the ring element 
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                                                        = σ (2π y dy) 

 

 

                        dy 

                      y�x� + y� 

 

                                                                       x                    P 

 

 

 

 

             Figure 7 

 

Electric potential at point P due to this ring element- 

dV = 
�

�πε�
B	

�j�z{� 

                                                                     = 
�

�πε�
t 9�� { B{;

�j�z{�  

The electric potential at point P due to the entire disc, V = [ �
�πε�

t 9�� { B{;
�j�z{�

¤

  

                     = 
�

�πε�σ 2π [ d �d
�j�z{�

¤

  = 

¥
��� [ e 9b� + e�;��

�¤

  dy 

                    = 
¥

��� o9b� + e�;�
�p


¤
 = 

¥
��� ¦√b� + §� − b¨ 

or              V =  
¥

��� ¦√b� + §� − b¨,   for x > 0                                                                 …..(11) 

If x >> a, then   V = 
¥

��� ©b k1 + ¤�
K�n

�
� −  bª = 

¥
��� ob + �

�
¤�
K� −  bp 

 

 

 

 

  a 
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                        = 
�

�πε�
¥�¤�

K  = 
�

�πε�
<
K 

or  V = 
�

�πε�
<
K ,  for x >>a                                                                                     …..(12) 

Thus for axial points distant x >>a, the disc behaves like a point charge. 

Case (ii) At the centre of the disc 

At the centre, x = 0, therefore from equation (11), we get- 

VC = 
¥

��� ¦√0� + §� − 0¨= 
¥¤
��� …..(13) 

 

 V 

 

 

 

 

 

 

 

 x                                                                          x 

                                                                              Figure 8 

The figure 8 shows the variation of electrical potential along the axis of a uniformly charged 
disc. 

Case (iii) At the rim or an edge of the disc 

Let A be the point on the edge of the disc. Let us consider a segment CD of a ring centred at A  
of radius r and thickness dr. 

Area of the segment = 2 r θ dr 

Electric charge on this segment dq = 2 r θ dr σ 
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The electric potential at point A due to this segment, dV = 
�

�πε�
�J
A  = 

�
�πε�

� � « B� t
A  

 

                                                                                         = 
�

�πε� (2σθ) dr                          …..(14) 

The electric potential at point A due to entire charge on the disc is given as-  

                                                V = [ �
�πε�  92σθ; dr�®


�®�/�                                                   …..(15) 

 C 

 r 

  

 A                                                B 

 dr 

 D 

 

 

                                                                             Figure 9 

From figure 9,                                       r = 2a cos θ 

or                                                      dr = - 2a sinθ dθ 

From equation (15), we get- 

                                        V = 
�¥

���� [ θ9 −2a sinθ dθ;�®

�®�/�  = 

¥¤
��� [ θ sinθ dθ

�®

�®�/�  

                                            = 
¥¤
��� °±²³´ −  ´ µ�±´¶
�/� = 

¥¤
���                                             …..(16) 

Accordingly, the electric potential falls from the centre of the disc to the edge or rim. This 
indicates that a uniformly charged disc is not an equipotential surface. 

3.7 ELECTRIC FIELD DUE TO A CHARGED DISC  

You have learnt that electric potential due to a charged disc on axial point is given as- 

 

 

 

                    a 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 63 

 

                                                 V =  
¥

��� ¦√b� + §� − b¨ 

Electric field intensity at axial point P at axial point P (Figure 7) at a distance x from the centre 

of the disc,                   E = - 
`�
`K  = - 

`
`K o ¥

��� ·√§� + b� −  b¸p 
or                                            E = 

¥
��� o1 − K

√¤�zK�p                                                       …..(17) 

At the centre of the disc, x = 0, therefore electric field intensity E = 
¥

���                     …..(18) 

At axial points x >>a, the electric field intensity, E = 
¥

��� o1 − K
√¤�zK�p 

                                                                           = 
¥

��� o1 − b9§� + b�;?�
�p 

                                            = 
¥

��� ©1 − k1 + ¤�
K�n?�

�ª = 
¥

��� o1 − k1 − ¤�
�K�np,      for x >> a 

or                          E  = 
¥¤�

���K� = 
�

�πε�
�t��
�πε�  = 

�
�πε�

<
K�,       for x >> a                        …..(19) 

 

E 

¹
2�
 

¹§�
4�
b� 

-2a         -a                       a                    -2a 

 Ox 

 

                                                              -  
¥¤�

���K� 

− ¹
2�
 

 

                                                                                Figure 10 
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Figure 10 shows the variation of electric field intensity along the axis of a uniformly charged 
disc. 

Example 1:  The electric potential at the centre of an uniformly charged disc is 200 volt and the 
radius of the disc is 30 cm. Determine the charge on its surface? 

Solution: Given, VC = 200 volt, Radius of the disc,  a = 30 cm = 0.30 m  

We know,                 VC  = 
¥¤
��� 

or  σ = VC (2�
)/a = 200(2×8.85×10-12)/ 0.30 = 1.18×10-8 C/m2 

Now σ = 
J

�¤�   or  q = σ π a2 = 1.18×10-8 ×3.14×(0.30)2 = 3.33×10-10 C 

Example 2:An infinite long conducting wire is stretched horizontally 3 metres above the surface 
of the earth. The wire has a charge of  1 C per m of its length. Determine the electric field 
intensity at a point on the earth vertically below the wire. 

Solution: We know that electric field intensity due to an infinitely long wire at any point distant r 
is given by- 

                                                        E =  
�

�πε�
�λ

�  

Here, λ = 1 C per m, r = 3 m; therefore E = 9×109×
�×�

:  = 6×109 N/C 

Self Assessment Question (SAQ) 1:Estimate the electric potential difference between the centre 
and the surface of a sphere of radius ‘R’ with uniform charge density ρ within it. 

Self Assessment Question (SAQ) 2:An infinite line charge generates an electric field intensity 
of 3× 105 N/C at a distance of 2 cm. Calculate the value of linear charge density. 

3.8 ELECTRIC DIPOLE 

“If two equal and opposite charges are placed at a short distance apart, then this system is known 
as an electric dipole.” The product of magnitude of one charge and the distance between the 
charges is called ‘electric dipole moment’ and it is denoted by ‘p’.                                                

p12  

                                       -q                                                             +q 

                                                                     2l 

                                                                       Figure 11 
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Let two charges –q and + q coulomb are placed at a distance 2l metre, then the electric dipole 
moment is- 

                                                             p = q× 2l = 2ql                                                          …..(20) 

The electric dipole moment is a vector quantity whose direction is along the axis of the dipole 
pointing from the negative charge to the positive charge. The unit of electric dipole moment is 
coulomb-metre. Let us calculate the couple on an electric dipole in an uniform electric field. 

3.8.1 Couple on an Electric Dipole in a Uniform Electric Field 

Let us learn that what does happen with an electric dipole in an electric field. When an electric 
dipole is placed in a uniform electric field, a couple acts upon the dipole. This couple tends to 
align the electric dipole in the direction of the electric field. This is known as the ‘restoring 
couple’. 

 

 

 B 

                                    +q F’  

                                                                       2l 

 

F         -q           θ M E 

 A 

 

                                                                   Figure 12 

Let us consider an electric dipole AB placed in a uniform electric field E at an angle θ with the 
direction of electric field. –q and +q be the charges of electric dipole at a distance 2l from each 
other. 

Due to electric field E, the electric force on charge –q of dipole, F = qE ( in the opposite 
direction of E ) 

Similarly, the electric force on charge +q due to E, F’ = qE ( in the direction of electric field E) 

Obviously, the both forces are equal in magnitude but opposite in direction, due to this the net 
translator force on the electric dipole is zero, but these forces F and F (=F’) constitute a couple 
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which tends to align the dipole in the direction of the electric field E. This couple is restoring 
couple (τ). 

The moment of this restoring couple 

τ = magnitude of force × perpendicular distance between the lines of action of force 

                                = F × (BM) = qE ×2l sinθ 

                                = 2qlE sinθ = pE sinθ                      (since 2ql = p) 

Therefore,              τ = pE sinθ                                                                                           …..(21 ) 

The unit of couple τ is Newton-metre 

In vector form,      τ2 = p12 × E112                                                                                               …..(22 )  

Where   p12 is a vector from the charge –q to +q. 

If θ = 900, i.e. electric dipole is placed perpendicular to electric field, then the couple acting on it 
is- 

                                     τ = pE sin900 = pE 

In this case, the couple acting on dipole will be maximum, therefore- 

                                         τmax = pE                                                                                  …..(23 ) 

or                                      p = 
τº��

�  

If E = 1N/C, then p = τmax C-m, i.e., the moment of an electric dipole is equal to the couple 
acting on the dipole placed perpendicular to the direction of a uniform electric field intensity of 1 
N/C. 

If θ = 00, i.e. dipole is placed parallel to electric field, then the couple acting on dipole- 

                          τ = pE sin00 = 0 .....(24) 

i.e. if the dipole is placed parallel to the field, then no couple will act on dipole.              

3.8.2 Work Done in Rotating an Electric Dipole in an Electric Field 

Let us consider a dipole placed in a uniform electric field. If it is rotated from its equilibrium 
position, work has to be done. 
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Let us suppose that an electric dipole placed in electric field, is rotated through an angle θ from 
its equilibrium position. During rotation, the couple acting on the dipole changes. Let us suppose 
that at any instant, the dipole makes an angle α with the direction of electric field E.  

The instantaneous couple acting on the dipole is- 

                                                                 τ = pE sinα 

Amount of work done in rotating the dipole from this position through an infinitesimally small 
angle dα  is- 

                                  dW = couple × angular displacement 

                                         = (pE sinα) dα 

Amount of work done in rotating the dipole through the angle θ from its equilibrium position is- 

                                   W = [ Y»�

  = [ 9pE sinα; dα�


  

                                        = pE [  sinα dα�

   = pE ¦– cos ¾¨


�
 = - pE °cos ¾¶
� 

                                        = -pE [cos θ – cos 0] = -pE [cosθ – 1] 

or                                W = pE (1- cos θ)                                                                              …..(25 ) 

The above expression represents the work done in rotating an electric dipole in a uniform electric 
field through an angle θ from the direction of the electric field ( i.e. equilibrium position). 

If θ = 900, i.e. the dipole is rotated through an angle 900 from its equilibrium position, then work 
done- 

                                               W = pE (1- cos 900) 

                                                   = pE (1- 0) = pE                                                                 …..(26) 

If the dipole is rotated through 1800 from the direction of the electric field, then the work done- 

                                           W = pE (1 – cos 1800) 

                                               = pE (1+1) = 2pE                                                                   …..(27) 

This is the maximum work done for rotating a dipole. 

3.8.3 Potential Energy of an Electric Dipole in an Electric Field 

“The potential energy of an electric dipole in an electric field is defined as the work done in 
bringing the dipole from infinity to inside the electric field.” 
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 E112 

 p12 

               F                                                              F 

                                        -q               2l                    +q                                                From infinity 

 

 

       Figure 13 

Let an electric dipole is brought from infinity to a uniform electric field E in such a way that the 
electric dipole moment p is always in the direction of electric field. Due to electric field E, a 
force F (= qE) acts on the charge +q in the direction of the electric field and an equal force F 
(=qE) on the charge –q in the opposite direction. Therefore, in bringing the electric dipole in the 
electric field from infinity, work will be done on the charge +q by an external agent, while work 
will be done by the electric field itself on the charge –q. 

Obviously, when the dipole is brought from infinity into the electric field, the charge –q covers 
2l distance more than the charge +q. Hence, the work done on –q charge will be greater. 
Therefore, the net work done in bringing the electric dipole from infinity into the electric field         
= force on charge (–q) × additional distance moved 

=  (-qE)×2l = - (2ql)E = -pE                                                [since 2ql = p] 

This work is the potential energy U0 of the electric dipole placed in the electric field parallel to it 
i.e.                                                             U0 = -pE                                                           …..(28) 

In this position, the electric dipole is in stable equilibrium inside the field. 

If we rotate the electric dipole in the electric field through an angle θ, then work will have to be 
done on electric dipole. This work is- 

                                                               W = pE (1-cosθ)                                                  …..(29) 

This will result in an increase in the potential energy of the electric dipole. Hence, the potential 
energy of the dipole in the position θ will be given by- 

                                                                  Uθ = U0 + W 

                                                                        = -pE + pE (1-cosθ) 
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                                                                        = -pE + pE – pE cosθ = -pE cosθ 

or                                                                       Uθ = -pE cosθ                                             …..(30) 

The above equation (30) represents the potential energy of the electric dipole. 

In vector form, equation (30) can be written as- 

U112 = -p12. E112                                                          …..(31) 

If θ = 900 i.e. the electric dipole is placed perpendicular to the electric field, then 

                                                       U90 = -pE cos900 = 0 

i.e. if we keep the electric dipole perpendicular to the electric field while bringing it from infinity 
into the electric field, then the work done on the charge +q by the external agent will be equal to 
the work on the charge –q by the electric field. In this way, the net work done on the dipole will 
be zero and hence the potential energy of the dipole will also be zero. 

If θ= 1800, i.e. if we rotate the electric dipole through 1800 from the position of stable 
equilibrium, then the potential energy, U180 = -pE cos1800 = + PE 

In this position, the electric dipole will be in unstable equilibrium. 

3.8.4 Electric Field due to an Electric Dipole 

In this subsection, you shall learn about electric field due to an electric dipole. You will calculate 
the electric field intensity on the axis of a dipole (i.e. end-on position) and equatorial line of a 
dipole (i.e. broad-side-on position). 

(i) Electric field intensity at a point on the axis of a dipole ( end-on position) 

Let us consider an electric dipole situated in a medium of dielectric constant K. Let P be a point 
on the axis at a distance ‘r’ metre from the midpoint ‘O’ of the dipole at which electric field 
intensity is to be determined. 

 

 2l 

                                      A                                                   BE2P        E1 

                                      -q                         O                        +q 

                                                                                                          r 

                                                                             Figure 14 
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The distance of point P from charge –q = (r+l) 

The distance of point P from charge +q = (r-l) 

Therefore, electric field intensity at point P due to charge +q, E1 = 
�

����À
J

9A?L;�,  ( along BP) 

Similarly, electric field intensity at point P due to charge -q, E2 = 
�

����À
J

9AzL;�,  ( along PA) 

Obviously, both intensities are in opposite directions, therefore net electric field intensity at point 
P,                                                     E = E1 – E2                              (since E1-E2) 

                                                           = 
�

����À
J

9A?L;� - 
�

����À
J

9AzL;� 

                                                           = 
J

����À  ° �
9A?L;� − �

9AzL;�¶ = 
J

����À [
9AzL;�?9A?L;�

9A�?L�;� ] 

                                                           = 
J

����À[
�LA

9A�?L�;�] = 
�

����À o �9�JL;A
9A�?L�;�p 

or                                                E = 
�

����À o �ÁA
9A�?L�;�p                                         …..(32) 

 [since 2ql = p, electric dipole moment] 

The direction of E is along BP i.e. along the axis of the dipole from the negative charge towards 
the positive charge. 

If  l<< r, then l2 may be neglected in comparison to r2. Then electric field intensity at point P, 

                                               E =  
�

����À o�ÁA
Aq p = 

�
����À o�Á

A�p,  N/C          …..(33) 

For air or vacuum, K =1, then   E = 
�

���� o�Á
A�p      N/C              …..(34) 

(ii) Electric field intensity at a point on the equatorial line of a dipole (broad-side-on 

position) 

Now let us calculate the electric field intensity at a point on the equatorial line. Let us suppose 
that the point P is situated on the right-bisector of the electric dipole AB at a distance ‘r’ metre 
from its mid-point ‘O’. 

Electric field intensity at point P due to charge +q, E1 = 
�

����À
J

9\Â;� 

                                                                                      = 
�

����À
J

9A�zL�;,         ( along BP) 
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Similarly, electric field intensity at point P due to charge –q, E2 = 
�

����À
J

9\Ã;� 

                                                                                                 =
�

����À
J

9A�zL�;,       (along PA) 

Obviously, the magnitudes of E1 and E2 are equal but directions are different. 

Resolving E1 and E2 into their components- 

Horizontal component of E1 = E1 cosθ                                           (parallel to BA) 

Vertical component of E1 = E1 sinθ                                                (perpendicular to BA) 

Similarly, horizontal component of E2 = E2 cosθ     (parallel to BA) 

Vertical component of E2 = E2 sinθ                                               (perpendicular to BA) 

 

 

                                                       E1 

                θ 

                                                 E                  P 

 

                                                  E2 

 √Z� + �� 

√Z� + �� r 

 θ 

 A                                                  B                                          

                                      -q                         O                        +q 

 

2l 

 Figure 15 
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Vertical components of E1 and E2  (E1 sinθ and E2 sinθ) are equal in magnitudes but opposite in 
direction, hence they cancel to each other. But horizontal components (E1 cosθ and E2 cosθ)  are 
in same direction. Hence the resultant electric field intensity at point P is- 

                                                      E = E1 cosθ + E2 cosθ 

                                                         = 2E1 cosθ                                           (since E1 = E2) 

                                                        = 2
�

����À
J

9A�zL�;  cosθ 

But in right angled triangle POB,  cosθ = 
�Ä
ÅÄ = 

L
√A�zL� 

Therefore,          E = 2
�

����À
J

9A�zL�;
L

√A�zL� 

 = 
�

����À
�JL

9A�zL�;� �Æ   = 
�

����À
Á

9A�zL�;� �Æ                    [since 2ql = p] 

Thus,                                                        E = 
�

����À
Á

9A�zL�;� �Æ                                 …..(35) 

The direction of E is horizontal along BA i.e. parallel to the axis of dipole from positive charge 
to negative charge. 

If l<< r, i.e. l is very small in comparison of r, then l2 can be neglected in comparison to r2; then  

E = 
�

����À
Á

9A�;� �Æ  = 
�

����À
Á

A�  N/C                         …..(36) 

For air or vacuum, K =1 then E = 
�

����
Á
A�  N/C                                       …..(37) 

From equations (33) and (36), it is clear that for a short dipole the electric field intensity on an 
axial point is twice the intensity at the same distance on the equatorial line. 

3.8.5 Electric Potential due to an Electric Dipole 

In this subsection, you will calculate electric potential at a point on the axis and equatorial line of 
a dipole. 

(i) Electric potential at a point on the axis of the dipole(end-on position) 

Let us consider an electric dipole AB placed in a medium of dielectric constant K. P is the point 
on the axis ( end-on position) at a distance ‘r’ from the midpoint ‘O’ of the dipole at which 
electric potential is to be calculated. 
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                              2l 

                                      A                                                   B                                        P 

                                      -q                         O                        +q 

                                                                                                          r 

                                                                           Figure 16 

Electric potential at point P due to charge –q, V1 = 
�

����À
9?J;
Ã\  = − �

����À
J

9AzL; 

Similarly, electric potential at point P due to charge +q, V2 = 
�

����À
J

Â\ = 
�

����À
J

9A?L; 

Resultant electric potential at point P, V = V1 + V2 = − �
����À

J
9AzL; + 

�
����À

J
9A?L; 

= - 
J

����À[
�

9AzL; − �
9A?L;] = 

J
����À

�L
9A�?L�;  = 

�
����À

�JL
9A�?L�; = 

�
����À

Á
9A�?L�;,             [since 2ql = p] 

Thus,                                                  V = 
�

����À
Á

9A�?L�;                                    …..(38) 

If dipole is short i.e. l<< r, then l2 may be neglected in comparison to r2, then- 

                                                              V = 
�

����À
Á
A�   volt                                             …..(39) 

For air or vacuum, K =1 then                    V = 
�

����
Á

A� volt                                            …..(40) 

(ii) Electric potential at a point on the equatorial line of the dipole (broad-side-on position) 

P 

 

 

 √Z� + �� 

√Z� + ��  r 

                                        -q                                                    +q                                                   

                                   A                             O                               B                                          

                                  2l 

                                                                       Figure 17 
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Now let us consider a point P on the equatorial line of a dipole at a distance ‘r’ from the midpoint 
‘O’ of the dipole at which electric potential is to be calculated. 

The electric potential at point P due to charge -q, V1 = 
�

����À
9?J;
Ã\  = -  

�
����À

J
√A�zL� 

Similarly, the electric potential at point P due to charge +q, V2 = 
�

����À
J

Â\ = 
�

����À
J

√A�zL� 

Resultant electric potential at point P, V = V1 + V2 

                                                                = -  
�

����À
J

√A�zL� + 
�

����À
J

√A�zL� 

                                                               = 0 

Thus, the electric potential at an equatorial point of an electric dipole is zero. 

Example 3:Calculate electric dipole momentof the following dipole- 

 

-1µC                                          +1 µC 

 10 cm 

Solution: Here, q = 1 µC = 1 × 10-6 C, 2l = 10 cm = 0.1 m 

               Electric dipole moment p = q× 2l = 1 × 10-6 × 0.1 = 1×10-7 C-m 

Self Assessment Question (SAQ) 3: Two short electric dipoles of electric dipole moments p1 
and p2 are in a straight line. Prove that the potential energy of each in the presence of the other is 

-
�

����
Á�Á�

A� , where r is the distance between the dipoles.  

3.9 SUMMARY 

In the present unit, you have calculated electric potential and electric field intensity due to long 
charged wire, charged sphere and charged disc. You have studied thatthe electric potential falls 
from the centre of the disc to the edge or rim which indicates that a uniformly charged disc is not 
an equipotential surface. In this unit, you have learnt about electric dipole and electric dipole 
moment. If two equal and opposite charges are placed at a short distance apart, then this system 
is known as an electric dipole. The product of magnitude of one charge and the distance between 
the charges is called ‘electric dipole moment’. You have also study about the torque acting on an 
electric dipole in a uniform electric field which is given as τ = pE sinθ, where p is the dipole 
moment, E, the intensity of electric field and θ is the angle that dipole makes with the direction 
of electric field.You have calculated the electric field intensity and potential due to dipole in end-
on position and broad-side-on position.You have learntthat for a short dipole the electric field 
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intensity on an axial point is twice the intensity at the same distance on the equatorial line. You 
have also studied thatthe electric potential at an equatorial point of an electric dipole is zero. 

3.10 GLOSSARY  

Uniformly- homogeneously 

Non-conducting- in which there is no flow of current 

Align- line up, ally 

Constitute- make up, compose, comprise 

Rotation- turning round, revolution 

3.11 TERMINAL QUESTIONS 

1. Establish an expression for electric field intensity due to a long charged wire. 

2. Prove that the electric potential difference  due to a long charged wire  between two points 

distant r1 and r2  is                    ∆V = 
�

���� ���� A�
A� 

3. A conducting sphere of radius 1 cm has an unknown charge. The electric field intensity at a 
point distant 2 cm from the centre of sphere is 2.7×104 N/C and points radially inward. 
Calculate the net charge on sphere. 

4. Show that electric field intensity due to a charged sphere at an external point is given as- 

    EO = 
�

�πε�
D
��, where symbols have their usual meanings. Show the variation of electric field due 

to a uniformly charged non-conducting sphere. 

5.  Establish the formula for electric potential due to a charged sphere. 

6. Derive the formula for electric field due to a charged disc at a distance x from its centre. Also 

show that at the centre of disc, the electric potential is 
¥¤
���, where ‘σ’ and ‘a’ are surface 

charge density and radius of disc. 

7. Establish an expression for electric field due to a charged disc at an external point and hence 

show that the electric field at the centre of the disc is given as E = 
¥

���, where symbols have 

their usual meaning. 

8. What do you mean by an electric dipole? Show that an electric dipole, in a uniform electric 
field, experiences only a torque and no net force. 
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9. Establish an expression for the torque acting on dipole in a uniform electric field. 

10. Derive an expression for work done in rotating an electric dipole through an angle θ in an 
electric field. 

11. Obtain the expression for potential energy of an electric dipole in an electric field. 

12. Show that the electric field intensity due to an electric dipole at a point on end-on position is 

given by  E = 
�

����À o �ÁA
9A�?L�;�p, where symbols have their usual meaning. 

13. Prove that in air, the electric field intensity due to an electric dipole at a point on the 

equatorial line of a dipole is E = 
�

����
Á

9A�zL�;� �Æ , where symbols have their usual meaning. 

14. Prove that at a point in the broad-side-on position of an electric dipole the electric potential is 
zero. 

15. Explain, how is the electric potential due to a short electric dipole at a point r distant on the 

axis of the dipole is 
�

����À
Á
A� ? Here p and K are the electric dipole moment of dipole and 

dielectric constant of medium. 

16. Two point charges of -3 µC and +3 µC are at a distance 0.2 cm apart from each other. 
Calculate- 

    (i) electric dipole moment of the dipole 

   (ii) electric field intensity at a distance of 60 cm from the dipole in broad-side-on position 

   (iii) electric potential at a distance of 60 cm from the dipole in broad-side-on position 

   (iv) electric field intensity at a distance of 60 cm from the dipole in end-side-on position 

   (v) electric potential at a distance of 60 cm from the dipole in end-side-on position 

3.12 ANSWERS 

Self Assessment Questions (SAQs): 

1.We know that electric field intensity at a point distant r from the centre is given by- 

�12 =  �
�πε�

D�
�� Ẑ, Q = Total charge on the sphere 

The potential difference between the centre ( r= 0) and the surface ( r = R) is given by- 

V0 – VR = - [ �12

¢ .YZ11112 
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                                                   = - [ �
����

D�
�� Ẑ


¢ .YZ11112 = - [ �
����

D�
�� 91 ×  YZ × cos 0



¢ ; 

                                                   = - [ �
����

D�
��  YZ


¢  = -
�

����
D

�� [ ZYZ

¢  

                                                  = 
�

����
D

�� 

 But ρ = 
<

q
��¢�  or Q =  

�
: �È:ρ 

Therefore, V0 – VR = 
�

����
q
��¢�v

��  = 
É¢�
���  

2. Given, E = 3× 105 N/C, r = 2 cm = 0.02 m 

    We know that  E = 
�

����
�λ

�  

3× 105 = 9×109×
��


.
�    or  λ = 3.3×10-7 C/m 

3.  

                        -q             +q                                   -q             +q   

 

 r 

The electric field due to short dipole of electric dipole moment p1 at the other dipole is- 

                                                                 E = 
�

����
�Á
A� 

The potential energy of dipole with dipole moments p2 in the electric field is- 

                                                        U = -p2E cosθ = -p2×
�

����
�Á
A�  

                                                            = -
�

����
Á�Á�

A�  

Terminal Questions: 

3. Given, R= 1 cm = 0.01 m, E = 2.7×104 N/C, r = 2 cm = 0.02 m 

    Using  E = 
�

����
D
��, we get- 

    2.7×104 = 9×109×
D

9
.
�;�    or  Q = 12 C 
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16. The two charges form a dipole. Here q = 3 µC = 3×10-6 C, 2l = 0.2 cm = 0.002 m 

     (i) Electric dipole moment, p = q × 2l = 3×10-6 ×0.002 = 6 × 10-9 C-m 

     (ii) r = 60 cm =0.60 m 

          E = 
�

����
Á

A� = 9 × 109×
� × �
��
9
.�
;�  = 250 N/C 

     (iii) Electric potential in broad-side-on position, V = 0 

    (iv) Electric field intensity at a distance of 60 cm from the dipole in end-side-on position is- 

           E = 
�

���� o�Á
A�p = 9 × 109×

�×� × �
��
9
.�
;�  = 500 N/C 

    (v) Electric potential at a distance of 60 cm from the dipole in end-side-on position is- 

           V = 
�

����
Á

A� = 9 × 109×
� × �
��
9
.�
;�  = 150 volt 
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4.7 Gauss’s law in Dielectric 

4.8Terminal Questions 
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4.1INTRODUCTION 
Electrical insulator materials which will prevent the flow of current in an electrical circuit are 
being used since from the beginning of the science and technology of electrical phenomena. 
Dielectrics are insulating materials that exhibit the property of electrical polarization, thereby 
they modify the dielectric function of the vacuum. The first capacitor was constructed by 
Cunaeus and Mussachenbroek in 1745 which was known as Leyden jar. But there were no 
studies about the properties of insulating materials until 1837. Faraday published the first 
numerical measurements on these materials, which he called dielectrics. Hehas found that the 
capacity of a condenser was dependent on the nature of the material separating the conducting 
surface. This discovery encouraged further empirical studies of insulating materials aiming at 
maximizing the amount of charge that can be stored by a capacitor. Throughout most of the 19th 
century, scientists searching for insulating materials for specific applications have become 
increasingly concerned with the detailed physical mechanism governing the behavior of these 
materials. In contrast tothe insulation aspect, the dielectric phenomena have become more 
general and fundamental, as it has the origin with the dielectric polarization. 
In this Unit we have consider the problems of electrostatics in the absence of matter. Now we 
consider the phenomena in the medium other than empty space (vacuum) such as solid or liquid 
insulator, alternatively called dielectric the theory of dielectric was begun by Michael Farady, in 
1837, and subsequently developed by Maxwell. 
The properties of dielectric may vary from point to point i.e., it may not be homogeneous and in 
the neighbourhood of a point, the properties of a dielectric may not be same everywhere i.e. it 
may not be isotropic. 
 

4.2 OBJECTIVES 
The Main objectives of the present unit are: 

(i) To know about the Dielectrics. 
(ii) To study about polarization vector P. 
(iii) To know about electric field of polarized piece of a dielectric. 
(iv) To know about potential of polarized piece of a dielectric. 
(v) Gauss’s law of a dielectric. 

 

4.3 DIELECTRIC 
A dielectric is a substance in which  all the electrons are tightly bound to the nuclei of the atom i. 
e., no free electron are available to carry current . Thus substances which do not permit the 
passage of electric charge are called dielectric or insulators. The electric conductivity of a 
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dielectric is very low (the conductivity of a dielectric is zero). Example: Certain substances such 
as glass, plastic quartz, mica, resins, waxes and oil etc. 

 

4.3.1 Dielectric Constant 

The theory of dielectric was begun by Faraday and subsequently by Maxwell. Using a simple 
electroscope and two parallel plate capacitors Faraday, discovered that dielectric materials can 
conduct small conductivity. He constructed two identical capacitors, in one of which he placed a 
dielectric. When both capacitors were charged to the same potential difference, it was found that 
the charge on the capacitors with dielectric is greater than that without. Since q is large for same 

V it follows from C = 
J
�  that the capacitance of a capacitor increases if dielectric is between the 

plates.  
The ratio of capacitors after and before introducing the dielectric is known as dielectric 

constant (K) of the material. Thus if c is the capacitance with dielectric materials and Co that in 
vacuum 

i.e.,         Ê =  �
��     ....... (1) 

The constant K is also called relative permittivity, specific inductivity capacitance or dielectric 
coefficient.It is independent of the shape and size of the capacitor but its value varies widely for 
different materials. For vacuum K = 1 (by definition), for air 1.006, for glass around 6 and so on. 
 

4.3.2 Classification of dielectrics 
The molecules of dielectric may be classified as polar and non –polar. 
Non Polar Molecules  

In an atom the negatively charged electrons are distributed around the positively charged nucleus 
in such a way that the centre of electron cloud coincide with centre of nucleus. So in an atom 
there is no separation of positive and negative charge. The atom there for has no dipole moment. 
When two identical atoms combine to form a molecule, again there is no separation of negative 
and positive charge. The molecule formed by two identical atoms does not possess dipole 
moment. Such molecule are called non polar molecule and substance is made up of such 
molecule are called non polar substances. 
H2, N2, O2, CO2, CCI4, C6H6, C6H12, CS2, etc. are some common example of non polar 
molecules. In a molecule of CO2, the oxygen ions are symmetrically placedwith respect to the 
carbon ion, hence net dipole moment is zero. Thus CO2 is non polar molecule. 

p = p1-p2 = 0                                                   ....... (2) 
 
 
 
                              

 

                                                                     Polar molecules 

C++++ 

P1 P2 
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When two electrons of different electro negativities combine to form a covalent bond the shared 
electron pair is shifted towards the more electronegative atom as result of which a separation of 
positive and negative charge takes place and the bond acquires a dipole moment. Such a bond is 
called polar bond. If the polar bond in a molecule is symmetrically distributed, the resultant 
dipole moment of various polar bonds comes out be to zero. Then the molecule is called non 
polar. On the other hand if the polar bonds in a molecule are not symmetrically distributed, the 
resultant dipole has finite value, then the molecule is polar.   
HCL, CO, NH3, H2O, CHCL3, C6H5Cl, C6H5NO2, C2H5OH etc. are some common example of 
polar molecules.  In HCl molecule, the electron cloud is slightly shifted towards the more 
electronegative atom Cl. The molecule is therefore, a dipole having dipole moment P directed 
from Cl atom to the H atom similarly the co molecule is a dipole having a moment O to C atom. 
In water molecule the two OH bonds are inclined at 1040. Because of higher electro negativity of 
oxygen, the O-H bond acquires polarity with negative ends at the oxygen atom and the positive 
at the hydrogen atom. 

p = [p1
2 + p2

2 + 2p1p2cosθ]1/2 ....... (3) 
  Where p1 = p2 is the dipole moment of one O-H bond and θ = 1040 
 

4.3.3 Polarization of dielectric 

The phenomenon of polarization may be illustratedhere from elementary atomic view. When a 
dielectric material is placed in electric field, the positive and negative charge of non polar 
molecules or atoms experience electrostatic forces in opposite directions. Therefore the centres 
of gravity of the two charges are separated from each other. The molecules thus acquire an 
induced electric dipole moment in the direction of the field. 
When an electric field is applied on polar molecules (permanent dipole), the forces on a dipole 
give rise to a couple, whose effect is to orient the dipole along the direction of electric field. The 
stronger field, the greater is the aligning effect. This alignment is however, incomplete due to the 
thermal agitation of the molecule (the alignment become more and more perfect as the electric 
field is increase or the temperature is decreased).Thus non polar molecules become  induced 
dipole whereas polar molecules are oriented  by the field and therefore have their dipole 
moments increased. The orientation of induced dipoles or of permanent dipoles in an external 
electric field is such as to set the axis of dipoles along the field.  This phenomenon is known as 
electric polarization.  
There is a main difference between these two mechanisms. The polarization of non-polar 
molecule is independent of temperature. As polar molecule are undergoing thermal motion hence 
are randomly oriented. Thus the polar molecule can aligned perfectly with the smallest external 
electric field at about absolute zero. 
 

4.3.4 Effect of Polarization on Electric Field within the dielectric  
Suppose a slab of dielectric material is placed in the uniform electric field E0 set up between the 
parallel plates of a charge capacitor. The slab becomes electrically polarized i.e. its dipole are 
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oriented in the direction of the field. The net effect is appearance of negative charge on one face 
of the slab and an equal positive charge on opposite face. The polarization charges induced on 
the two faces of the slab produces their own electric field E, which opposes the external field E0. 
Hence the resultant field E within the dielectric is smaller than E0but point as in same direction 
as E0 (E= E0 - E’). The field in the rest of the free space is still E0. Hence we conclude thatwhen 
a dielectric is placed in an electric fieldthe field within the dielectric is weakened (but not 
reduced to zero). 
 
 
 
 

 
 

 
Figure 1 

The charges within the polarised dielectric or those appearing at its surfaces are known as 
fictious charges or bound charges or polarisation charges and the charges on the plates of 
condenser are called free charges or real charges. If we assume that all the molecules are 
polarised to the same extent then the bound charges within the main body of dielectric will 
neutral one another because the negative side of one polarised molecule is adjacent to the 
positive side of its neighbour. However at the surface of the dielectric, in contact with the plates, 
the bound charges are not neutralised. This causes the field in the dielectric to become smaller 
than in the free space. 

4.4 ELECTRIC POLARIZATION VECTOR P 
When a dielectric is placed in an electric field, its molecules become electric dipoles and the 
dielectric is said to be electrically polarised. The state of polarisation is described by polarisation 
vectorP, which is defined as the dipole moment per unit volume of dielectric material. The 
polarisation vector is related to bound charges. 
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Figure 2 

 

Let us consider a slab of homogeneous isotropic dielectric material of thickness l and face area 
A. Let it be placed perpendicular to a uniform electric field between the parallel plates of a 
capacitor having free charges +q and –q. The slab is polarised. Let –q’ and +q’ be the bound 
charges induced on its end faces (figure 2). 
The induced electric dipole moment of the slab as a whole is  q’l and its volume is Al. The 
magnitude of the electric polarisation is, therefore, 

P = 
J′L
ÃL =  J′

Ã  ....... (4) 

 
Now P may also be defined as the induced surface charge per unit area i.e., the surface density of 
bound charges (σp) in dielectric 
            P = σ’

p  ........(5)  
 
Thus for a homogeneous isotropic dielectric, the electric polarisation P is numerically equal to 
the surface density of the induced charge appearing at the ends of dielectric block. 
The unit of P is same as of charge density i.e., coulomb/m2. It is zero for vacuum. The direction 
of P is from the negative induced charge –q’ to the positive induced charge +q’ as for any dipole. 
Equation (5) can be generalised by considering the case when the dielectric surface is not to P 

(figure 2). Let the normal to the surface plane XY makes an angle θ with the direction of P. 

Let σp be the surface charge of found charges. The dipole moment of the slab is σpAl and its 
volume is (A cosθ)l. The magnitude of polarisation vector is  

P = 
¥ËÃL

9ÃÌ���;L 
σp = P cosθ = P.n    ....... (6) 

 
where n is a unit vector normal to the surface. 
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4.5 FIELD OF A POLARIZED PIECE OF DEELECTRIC 
If a dielectric is uniformly polarised, polarisation charges appear only at the surface. In case of 
non-uniform polarisation charges also appear within the body of the dielectric. We have seen that 
in case of uniform polarisation the surface density of polarisation charge is equal to the normal 
component of polarisation vector. In what follows we shall see that in case of non-uniform 
polarisation the volume density of polarisation charge is equal to the negative divergence of 
polarisation vector. 
Consider a volume element dτ at point r’ (x’, y’, z’) inside the dielectric. The point of observation 
P lies at point r

” (x”, y”, z”). The position vector of field point P relative to volume element 
(source point) dτ is r (=r” – r’). The dipole moment associated the volume element is Pdτ, where 
P is polarisation vector. The potential at point P due to charge in volume element is 

dφ = 
�

�πε�
Í.Î
A� Yτ 

 
Hence the potential of entire piece of polarized material is  

                        φ = 
�

�πε� [ Í.Î
A� Yτ 

where the integration is to be performed over the volume occupied by the dielectric piece. The 
above expression for potential can be written as 

                        ϕ= - 
�

�πε� [ Í . kÏ. �
Ðn Yτ ....... (7) 

 
 
 
 
 
 
 

 

 

Figure 3 

 

4.6 POTENTIAL OF A PIECE OF POLARIZED DIELECTRIC 
Here the operator ∇ involves differentiation with respect to observer’s coordinates (x”, y”, z”) 

'' '' ''
ˆˆ ˆd d d

i j k
dx dy dz

∇ = + +
r

 

We define 

'
' ' '

ˆˆ ˆd d d
i j k

dx dy dz
∇ = + +
r
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Which involves differentiation with respect to source coordinates (x’, y’, z’). It can be shown 
that 

Ï =  −Ï′ 
Making use of this result we can write equation (7) as  

ϕ =  
�

�πε� [ Í . kÏ′. �
Ðn Yτ     ....... (8) 

 
To transform equation (7) into more convenient from we make use of the following identity 

∇′9φÑ; =  ∇′φ. Ñ +  Ò∇′. Ñ 

To use this result we make the following replacement. A→P, ϕ → 
�
A . Doing so we obtain 

P.∇′ �
A =   ∇′ kÍ

An − �
A ∇′ . Í ....... (9) 

In view of equation (9) we can write equation (8) as 

                                                            ϕ =  
�

�πε� [ o∇′ kÍ
An − �

A ∇′ . Íp Yτ 

=  
�

�πε� [ ∇′ Í
A Yτ − �

�πε� [ ∇′.Í
A Yτ    ....... (10) 

 
Transforming the first integral on the right hand side into surface integral by divergence theorem 
we have 

            ϕ = 
�

�πε� [ Í.Ó
A Y~ + �

�πε� [ ∇′.Í
A Yτ   ....... (11) 

 
The first term on the right hand side of equation (11) looks like the potential due to a surface 
charge distribution with surface charge density 

 σb = P.n  ....... (12) 
And the second term looks like the potential due to a volume charge distribution with volume 
charge density 

ρb = −Ï. Í   ....... (13) 
In terms of newly defined charge densities σb  and ρb the potential of the polarized dielectric is 

            ϕ = 
�

�πε� [ σÔ��
A    +   

�
�πε� [ É�Õ

A  ....... (14)               

 

Proof of result                                    ∇ =  −∇′ 
r = r’’ – r’ = (x’’ – x’)i + (y’’ – y’)j  + (z’’-z’)k 
r2 = (x’’ – x’)2 + (y’’ – y’)2  + (z’’-z’)2

 

2r
`A
`K′

=  −29b ′′ − b′; → `A
`K′

=  K′′?K′

A  

Similarly,   
`A
`d′

=  d′′?d′

A   and     
`A
`f ′

=  f ′′?f ′

A  

Now  ∇′ k�
�n = i Ö

Öj′ k�
�n  +  j Ö

Ö{′ k�
�n  +  k Ö

ÖØ′ k�
�n 

          = − �
��

Ö�
Öj′  i − �

��
Ö�
Ö{′ j − �

��
Ö�
ÖØ′ k   
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          = 
�

A�
K′′?K′

A   i + 
�

A�
d′′?d′

A j +  �
A�

f ′′?f ′

A k 

          = 
Î

A� 

          = - ∇ k�
�n 

Hence                                                               ∇ =  −∇′ 
 

4.7 GAUSS’S LAW IN DIELECTRIC 
The well known gauss’s law in electrostatics states that that electric flux through any closed 
surface is equal to 1/ ε0 times the net charge enclosed by the surface. 
 

 

 

 

 

 

 

 

 

Figure 4 

Let us consider a parallel plate capacitor with plate area A having vacuum between its plates 
(figure 4) +q and –q be the charges on the plates of the capacitor and E0 be the uniform electric 
field between the plates. Let PQRS be a Gaussian surface. The electric flux through this surface 
is  

Ù E
. Y~, 
where dS is a small vector area on the surface. The net charge enclosed by the surface is +q. 
Therefore by Gauss’s law 

Ù E
. Y~ =  �
ε
 

But      E0.dS = E0A 

∴E0 A = 
J
ε�     ....... (15) 

Or                  E0  =  
J

ε�Ã 

Now, let us apply this law to a parallel plate capacitor filled with a dielectric material of 
dielectric constant K.  
A negative charge –q’ is induced on one surface and an equal positive charge +q’ on the other. 
These induced charges produce their own field which oppose the external magnetic field E0. Let 
E be the resultant field within the dielectric. The net charge enclosed by the Gaussian surface 
PQRS is now q-q’. In this case, Gauss’s law gives  

∮ E
. Y~ =  J
ε�   ....... (16)                            
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Or                   EA =
J?J′

ε�  

E =
J?J′

ε�Ã   ....... (17) 

We know that                                             
Ü
Ü� =  �

À 

Or                                                                   E0 = EK 
 
 
 
 
 
 

 

 

Figure 5 

 
Putting this value of E0 in equation (15), we have                             

E0 = 
J

Àε�Ã 

Inserting it in equation (17), we have 
J

Àε�Ã= 
J?J′

Àε�Ã 

   or                                              

q’ = � k1 − �
Àn  ....... (18) 

This equation shows that the induced surface charge q’ is always less than free charge q and is 
zero when K = 1 or the dielectric is not present. 

From equation (18) we find that q – q’ = 
J
À.  

Substituting this value of equation (17), The Gauss’s law in presence of dielectric takes the 
following form 

0

.
q

E dS
ε

=∫
rr

  

or
0

.
q

KE dS
ε

=∫
rr

       ....... (19)                        

We note that while using this form of Gauss’s law, the charge q contained within the Gaussian 
surface is taken to be ‘free’ charge only. The induced charge q’ has been taken into account by 
the introduction of K on left hand side. 

4.8 TERMINAL QUESTIONS 

4.8.1 Long type Questions: 

1. Differentiate between polar and non-polar molecules. Explain polarisation in them. 
2. Differentiate between electronic, ionic and orientational polarisability. 
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3. What do you understand by dielectric polarisation? Explain partial and complete 
polarisation. 

4. Deduce Gauss’s Law in dielectrics. 
5. Explain the effect of Polarization on electric field within the dielectric. 

 

4.8.2 Short type Questions: 

1. What is a dielectric? Give some examples. 
2. What is dielectric constant? 
3. Explain polar molecules. 
4. Explain Non-polar molecules. 
5. What is electric Polarisation of Vector P? 
6. Explain Gauss’s Law in Dielectrics. 
7. Explain Field of a Polarized piece of Dielectric. 

 

4.8.3 Objective type Questions: 

1. Which one of the following substances is dielectric: 
(a) Copper        (b) Mica        (c) Germanium            (d) Tungsten 

2. CO2 molecules is: 
(a) Polar       (b)  Non-Polar      (c) Natural       (d) Basic 

3. HCl molecule is : 
(a) Polar       (b)  Non-Polar      (c) Neutral      (d) Conductor 

4. Centres of positive and negative charges are not coincident in : 
(a) O2          (b)   N2         (c) CO2      (d) NH3 

5. Polar molecule is: 
(a) O2          (b)   N2         (c) H2      (d) H2O 

6. Non-Polar molecule is: 
(a) H2O          (b)   CCl4         (c) CHCl3      (d) H2O 

7.  Following is not a dielectric: 
(a) Wax          (b) Mercury       (c) Glass       (d) Mica 

8. Unit of Polarisation vector  P is: 
(b) Coulomb    (b) Coulomb metre   (c) Coulomb/metre-2   (d) Newton/coulomb 

4.9  ANSWERS 
Objective type Questions: 

(b)   2. (b)   3. (c)   4. (c)   5. (d)    6. (b)   7. (b)  8. (c)  
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5.1 INTRODUCTION 
In this Unit we have discussed three electric vectors (electric fields strength, electric polarization 
and electric displacement vectors), restatement of Gauss’s law, dielectric strengths and concept 
of capacitance in details. 
 

5.2 OBJECTIVE  
The Main objectives of the present unit are: 

(i) To define three electric vectors 
(ii) To define Restatement of Gauss’s Law 
(iii) To define capacitors 
(iv) To define Dielectric constant and their strength 
(v) To define combination of capacitors and their types 
(vi) To define Energy stored in a capacitor 

 

5.3 ELECTRIC FIELD STRENGTH E
r
 

The electric field strength at any point in an electric field is defined as the force experienced per 
unit infinitesimal positive charge (q0). If F is the force on small charge q0, then   
 

i.e.                                                  E= limJ
→

Þ

J
 

 
The direction of E is along the direction of force. The unit of E is Newton/coulomb or volt/metre. 
 

 

5.4  ELECTRIC POLARIZATION P
r
 

When a dielectric is placed in an external electric field, its molecules gain electric dipole moment 
and dielectric is said to be polarised. The electric dipole moment induced per unit volume of the 
dielectric material is called the electric polarisation of the dielectric. It is denoted by a vector P. 
If σp  is the surface charge densities of fictitious charges appearing at the end faces of a dielectric 
block, then P= σp 
The unit of polarisation is coulomb/metre2. 
 

5.5 ELECTRIC DISPLACEMENT VECTOR D
r
 

Let σ be the surface density of free charges on the capacitor plates and σ’ of the bound charges 
on the dielectric. The magnitude of the electric fields due to σ and σ’ are 

            E0 = 
σ

ε
    and E’ = 
σ’

ε
 

The magnitude of the resultant field within the dielectric is therefore, 
            E=E0 - E’            (the fields are oppositely directed) 
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Or                                                                  
E= σ/ε0 – σ’/ε0                       

Or                                                                
ε0E = σ – σ’ 
Or                                                                   
σ = ε0E + σ’                                                          ....... (1) 

The last term of above equation (σ’) is the induced charge density which is equal to the 
magnitude of electric polarisation P. So the above equation may be written as  
           σ = ε0E + P     ....... (2) 
 
The quantity on the right hand side of above equation is known as electric displacement D. 
Thus  

D = ε0E + P    ....... (3) 
From above two equations we find  
 D = σ                                                                            ....... (4) 
Since E and P are vectors, D is also a vector. This displacement vector is an important addition 
which is of great use is Maxwell’s electromagnetic equation to explain displacement current. In 
vector form equation (3) becomes 
D =  ε0E + P  ....... (5)  

 
5.6 THREE ELECTRIC VECTORS 
E, P and D are three electric vectors related to each other as shown in equation 5. These vectors 
may vary in magnitude and direction from point to point in complicated problems of 
electrostatics. But in simple case of a parallel plate capacitor filled with dielectric, each of three 
has a constant value or every point in the dielectric.   
 From the definition of D, P and E, we note the following- 
 
(1) D is connected with the free charge only. The displacement field can be represented by 

lines of displacement just as electric field is represented by lines of force. The lines of D 
begin and end on the free charges (figure 1). 

(2) P is connected with the induced surface charge or polarisation charge only. It can also be 
represented by lines known as lines of P. These lines begin and end on the polarisation 
charges i.e., induced charges due to polarisation. The flux of P equals the negative of the 
bound (induced) charge. Clearly P is zero except inside the dielectric. 

(3) The electric field intensity E is connected with the charge actually presents (free and 
bound charge). The lines of E depend upon the presence of both kinds of charges. 

(4) Unlike the electric field E and the polarisation P, the electric displacement D has no clear 
physical meaning. The only reason for introducing it is that it enables one to calculate the 
electric field in the presence of dielectric without knowing the distribution of polarisation 
charges. The introduction of D is a convenience and not a necessity. 
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(5) The unit of E is Newton/Coulomb while that of P and D is Coulomb/meter2. 
 

 
 
 

 
 

 

 

 

 

 

Figure1 

 

5.6.1   D and P in terms of E  
The vectors D and P can both be expressed in terms of E alone. 
We know that         E0 = σ/ε0                     and       D = σ   .....(see equation 4) 
E0 = D/ε0           or  D = ε0E0   ....... (6)       
Also        E0= KE                 or D= Kε0E....... (7) 
Equation (6) and (7) also show that the displacement D has the same value in the dielectric and 
in vacuum (where K = 1, E = E0). Hence the use of D is more convenient rather than E. 

 
Similarly we can also write a relation between P and E.  
Equation (2) gives        P = σ - ε0E 
But we have seen above that  
D = σ = Kε0E   
P = Kε0E- ε0E 

     or                                        P = (K – 1) ε0E 

 
This clearly shows that in vacuum (K = 1), the polarisation P is zero. 
 

5.7 RESTATEMENT OF GAUSS”S LAW 
The Gauss’s law in presence of dielectric has the following form 

0

1
. f

V
S

KE dS dVρ
ε

=∫ ∫
rr

  

where V is the volume enclosed by the surface S. 
But the relation D = Kε0Eallows us to write the Gauss’s law in another form 

∮ ß. Y~ = � = ∫ ρfdV   ....... (8) 
Where q represents the free charge only, this tells us that the surface integral of the normal 
component of D over a closed surface equals the free charge enclosed by the surface. 
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Transforming the surface integral into volume integral using divergence theorem we have 
           ∫Vdiv D dV = ∫V ρfdV 

Or    ∫V (div D - ρf)dV  = 0 
Since V is arbitrary, we have 

Div D = ρf           or               ∇. à =ρf   ....... (9) 
This is Gauss’s law in differential form in a dielectric.    
 

5.8 CONCEPT OF CAPACITANCE 
When water is poured in a vessel, the level of the water in the vessel rises. When heat is given to 
a conductor, the temperature (i.e.,thermal level) of conductor increases.  In the same way when 
electrical charge is given to a conductor, its electrical potential (i.e.electrical level) increases. It is 
observed that the increase in potential (V) of conductor is directly proportional to charge (Q) 
given to it,i.e., 
   V α Q 
           Or            Q α V 
           Or            Q =C V       ....... (10) 
 
Where C is a constant for a given conductor and depends on the shape and size of the conductor, 
the surrounding medium and the presence of the other neighbouring conductors. This constant is 
called the capacitance of the conductor.  
Form the equ (10),  
           C = Q/V        ....... (11) 
 
i.e, the capacitance of the conductor is the ratio of the charge given to and rise in potential of the 
conductor. 
If V=1 volt,C=Q,i.e., the capacitance of the conductor is numerically equal to the charge required 
to be given to conductor which raises its potential level by 1 volt. 
In SI system the unit of capacitance is coulomb/volt, called the farad (F). 
 

i.e.                          1 farad =
� Ì�áL�âã

� ä�Lå  

 
Thus, the capacitance of conductor is 1 Farad if 1 coulomb of charge raises its potential by 1 
volt. 
In practice farad is a very big unit, therefore usual units used are micro farad(µF) and picofarad 
(pF) 
 1µF=10-6 F 

and     1  pF=1µµF=10-12 F 
When water is poured in a vessel continuously, we observe that initially level of water in the 
vessel rises, then vessel is completely filled and finally water begins to flow out. In the same way 
when charge is given to the conductor continuously, its potential rises, becomes maximum and 
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finally when insulation capacity of the surrounding medium vanishes, the charge begins to leakin 
the medium. Thus a given conductor in a given medium cannot attain the amount of charge more 
than a definite maximum amount of charge. This definite maximum charge is determined by 
capacitance of conductor. Thus the capacitance conductor is its capacity of collecting the charge. 
Dimensions of capacitance: 

Capacitance C= Charge (Q)/Potential (V) 
As charge =current x time 
So dimensions of charge, Q= [AT] 
Potential, V=Work (W)/Charge (Q) 
    [ML2T-2]   
Dimensions of potential V =     =[ML2T-3A-1]  

[AT] 
 
Dimensions of charge (Q) [A T] 

(C)=        = 
Dimensions of potential (V)       [ML2T-3A-1] 

 
 
So    Dimensions of capacitance =[M-1L-2T4A2] 
 

5.8.1 Capacitance of an isolated spherical conductor 

Suppose aninsulated spherical conductor of radius R is placed in air. The word isolated implies 
that there is no other conductor near by the sphere. Suppose a charge +Q Coulomb is given to 
spherical conductor. As charge given to a conductor spreads on its outer surface such that the 
potential on each point of conductor becomes ‘same’. Thus, the surface of sphere becomes 
equipotential surface. As the electric lines of force are always perpendicular to equipotential 
surface; therefore, the electric lines of force emerge normally from the surface of sphere; and 
they appear to come from centre O radially outward. Consequently to determine the effect of 
charged sphere; at the surface points and external points, we can assume that the whole charge 
(Q) given to sphere may be supposed to be concentrated at its centre. Hence assuming charge (+ 
Q) situated at centre O of sphere, the potential at the surface of sphere,  
 

 
 
 
 
 
 

 
                               Figure 2 
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V= 
�

�πε�.Q /R 

                 Where 
�

�πε�   =9.0 x 109      newton-meter2/coulomb2   

Capacitance of isolated sphere 
 

C=
<
�  =

<
9 �      æ

qçè� é;; 
 

C=4πԐ 0 R    ....... (12) 
 

If R is in meter, C is in Farad,then  
C α R 

Clearly,capacitance of a spherical conductor is directly proportional to its radius. 
    C0  
Remark: From (12),              Ԑ 0 =   

4πR 
From this expression,the unit of permittivity of free space is farad/meter. 
From the Coulomb’s law of electrostatic force 

F = 
�

�πε�q1q2/r
2 ; the unit of ε
 coulomb2/newton-meter2. 

Thus, farad/meter and coulomb2/newton-meter2 units of same physical quantityε
. 
 
Example 1:  If 10 microcoulomb charge given to a conductor increases its potential by    2.5 
volt. What is the capacitance of the conductor? 
Solution: Here Q=10 µC = 10x10-6 coulomb, V=2.5 volt 

                Capacitance       C=
<
� 

                                             = 10x10-06/ 2.5  
                                            = 4.0x10-6 farad 
                                            = 4.0 µF 
Example 2: Assuming the earth be a spherical conductor of radius 6400 km, calculate its 
capacitance. 
Solution: The capacitance of a spherical conductor in air 
                C=4πε0R 
                    4πε0 = 1/9x109 C2/N-m2 
                      R= 6400x103m 
                   C= 6.4x106/9x109 =7.11x10-4F 
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5.8.2 Parallel Plate Capacitor with Dielectric 

It consist of two plate metallic plates A and B,placed parallel to each other .The plate may be of 
any shape,e.g., circular ,square and rectangular. The plates must be similar and at small 
separation. The plates carry equal and opposite charge +Q and –Q respectively.For this the plate 
is given a charge +Q and outer surface of plate B is earthed. When charge Q is given to plate 
A,the charge (-Q)is induced at inner surface of plate B and charge (+Q) at outer surface as outer 
surface of plate B is earthed,its charge (+Q) is transferred to earth. Thus the net charge on plate 
A is –Q and on the plate B it is (-Q). 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 3 

In general the electric field between the plates due the charges +Q and -Q remains uniform, but 
at edges,the electric lines of the force deviate outward. If separation between the plates is much 
smaller than the size of the plates,the electric field strength between the plates may be assumed 
uniform. 
Suppose A is the area of each plate, d the separation between the plates,K the dielectric constant 
of the medium filled between the plates. If σ is the magnitude of charge density of plates,then 

/Q Aσ =  

The electric field strength between the plates  
 E= σ / K Ԑ 0 

Where   Ԑ 0 =permittivity of free space. 
The potential difference between the plates  
            VAB = Ed = σd/K Ԑ0     ....... (13) 
Putting the value of    σ, we get     

VAB= 
kæ

ên�
À�
   =

<�
À�
Ã 

Capacitance of capacitor 
C= Q / VAB = Q/(Qd/K Ԑ0A)  

C=
À�
Ã

�    ------(14) 
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This expression for the capacitance for the parallel plate capacitor, clearly the capacitance of a 
parallel plate capacitor is 
(i) Directly proportional to the area of each plate. 
(ii) Directly proportional to the dielectric constant (or permittivity)of the medium. 
(iii) Inversely proportional to the distance between the plates. 
(iv) Independent of metal of plates. 
Thus for high capacitance of a parallel plate capacitor. 
(i) Area(A) of the plates should be large  
(ii)  The separation(d) between the plates should be small  
(iii)  The medium between the plates should be of high electric constant (K). 
 

5.9 DIELECTRIC CONSTANT 
If medium between the plates be air (or vacuum); then K=1,therefore capacitance of air capacitor  

            C0   =    
�
Ã

�    ...... (15)  

Dividing equation(14) by (15) 
�

�
=K 

Or C  =KC0                                           ....... (16) 
 

This shows that medium of dielectric constant K is introduced between plates of parallel plate 
capacitor,the capacitance of the capacitor increases K-times. 
From the equation(16), the dielectric constant of the medium may be define as the ratio of 
capacitance of the capacitor filled with medium to the capacitance of the same capacitor filled 
with the vacuum (or air). 

 

5.10 INCREASE OF CAPACITANCE WITH IN THE 

DIELECTRIC MEDIUN  
Suppose a dielectric medium is filled between the plates of the parallel plate capacitor.Every 
matter is constituted of molecules or atoms. In an atom positive charge is concentrated at the 
nucleus and the negatively charged electrons revolve around the nucleus in orbits. In dielectric 
medium the electron are strongly bound to the nucleus and in general the centre of positive and 
negative charges in each atom/ molecules coincide. When capacitor is charged, an electric field 
is established between the plates of the capacitor. Due to this electric field, the centres of positive 
charges are displaced along the direction of electric field or towards plate B; while the centres of 
negative charges are displaced opposite to the direction of electric field or towards the plate A. 
Thus the centres positive and negatively charges of each molecules/atom are displaced and 
molecule is said to be polarized. This causes an electric field Ei between the dielectric 
medium,which is opposite to direction of electric field produced due to charges on the plates. 
Thus,due to presence of dielectric medium,the resultant electric field between the plates is 
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reduced and hence the potential difference (V=Ed) across the plates is reduced. Consequently the 
capacitance of capacitor (C=Q/VAB) is increased. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

5.11 DIELECTRIC STRENGTH 

When potential difference between the plates of capacitor is increased continuously the electric 
field between capacitor plates will go on increasing and consequently the separation between 
positive and negative charges will go on increasing and a stage will come when the opposite 
charges of molecule will break off from molecule and become free. In this situation the dielectric 
willnot remain insulating conductor. As a result capacitor will be discharged. 
The minimum electric field strength applied to dielectric at which its electric breakdown takes 
place is called the dielectric strength. In other words, “The dielectric strength of a dielectricis the 
maximum electric field that it can withstand without breakdown of its insulation property”. It is 
constant for a given dielectric. The minimum value of potential difference across capacitor plates 
at which dielectric breaks down is called the breaking potential difference. It is to be noted that 
dielectric strength for a material remains fixed,but the breaking potential depend on the thickness 
of dielectric, i.e.  
Breaking potential difference =dielectric strength x thickness.   
The dielectric strength of the vacuum is infinity,for air it is 3 x 106V/m,for plastic it is 107V/m 
and for mica it is 1.6 x 108V/m. 
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Figure 4 

5.12 PARALLEL PLATE CAPACITOR WITH A DIELECTRIC  

Consider a parallel plate capacitor, area of each plate being A, the separation between the plates 
being d. Let a dielectric slab of dielectric constant K and thickness t< d be placed between the 
plates. Thickness of air between the plates = (d-t). If charge on plates be +Q and –Q, then surface 
charge density   

 
 
 
 
 
 
 
 
 
 

 

 

Figure 5 
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σ=  
<
Ã 

 
The electric field between the plates in air 
 

                 E1 = 
t
ԑ
=

<
ԑ
ì 

The electric field between the plates in slab 

E2 = 
t

�ԑ
=
<

�ԑ
ì 

The potential difference between the plates 
       VAB= Work done in carrying unit positive charge from one plate to another 
             = ΣEx (as field between the plates is not constant) 

             = E1(d-t)+E2t =
<

ԑ
ì (d-t) + 
<

�ԑ
ìt 

            VAB = 
<

ԑ
ì[ d-t+ 
å
í] 

Capacitance capacitor, C = 
<

�ìÄ = 
<

æ
ԑ�W° B?îz ïð¶ ……(17) 

                                     C = 
�
Ã

° B?îz ïð¶  =  
�
Ã

�?å9�? �
ð;

 

This is the required expression. As K> 1, it is obvious that due to introduction of slab of 
thickness t and dielectric constant K between the plates of a parallel plate capacitor, the effective 

distance in air is reduced by (1-
�
À)t ; and so the capacitance of capacitor increases. 

5.13 FORCE BETWEEN PLATES OF A CHARGED PARALLEL 

PLATE CAPACITOR  
The plates of the parallel plate capacitor are oppositely charged, hence each plate must 
experience force of attraction. 
Consider parallel plate capacitor of plate area A and separation between the plates d. Each 
charged plate produces an electric field and the other plates are placed in the vicinity of this 
electric field. Let Q be the charge and σ the surface charge density on each plate. Clearly 
 

σ= 
<
Ã 

 
The electric field produced due to either charged plates, 
 
 

 E1 =      
t

�ԑ
      ....... (18) 

 

Because charge on plate is accumulated on one side, Due to this electric field,the force of 
attraction on other plate =QE1 
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=   Q
t

�ԑ
       (using (18)   ....... (19) 

If  E is the electric field between the plates, then 

            E    =   
¥
�
 

or  
σ  =  ԑ0E                                  ....... (20) 

So Force of attraction between the plates 
 
                F= (1/2)QE      ....... (21) 
  
 
This is required expression .The factor ½ appears because the electric field in the vicinity of 
charge Q is produced by one plate only,so  

E1=1/2 E. 

If we put      E= 
¥
ԑ
= 

<
ì ԑ
in equation (21),we get 

 

 F = 
D�

� ԑ
 ì.......(22) 

 
 

5.14 COMBINATION OF THE CAPACITORS  
If the capacitor of required capacitance is not available,then the two and more capacitors may be 
combined to provide the required capacitance.There are two main method of combination. 
1. Series combination 

The reduced the capacitance,the capacitors are connected in series. In this combination the first 
plate of first capacitor is connect to first plate of second capacitor,the second plate of second 
capacitor is connected to first plate to third plate capacitor and so on ;the second plate of last 
capacitor is connected to the earth.In fig.6 three capacitors of capacitance C1,C2,C3 are connected 
in series between point A and D. 
Suppose by means of electric source a charge +Q is given to first plate of first capacitor C1. By 
induction –Q charge is induced on the inner surface of second plate of first capacitor and a +Q on 
inner surface of first plate of second capacitor C2and so on (fig 6).Thus first plate of each 
capacitor has charge +Q and second plate of each capacitor has charge –Q. 
Let the potential difference across the capacitor C1,C2,C3 be V1,V2,V3 respectively. As the second 
plate of first capacitor C1 and first plate of second capacitor C2 are connected together, therefore 
their potentials are equal. Let this common potential be VB. Similarly the common potential of 
second plate of C2 and first plate of C3 is Vc. The second plate of capacitor C3 is connected to the 
earth,therefore its potential VD =0. As charge flows from higher potential to lower 
potential,therefore VA>VB>VC>VD. 
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For the first capacitor V1 = VA-VB = 
<

S�    ....... (23) 

 

For the second capacitor V2 = VB - Vc = 
<

S�   ....... (24) 

 

For the third  capacitor V3 = Vc – VD = 
<

S:  ....... (25) 

 

 

 
Figure6 

 
Adding equations (23),(24) and (25),we get 
V1+V2+V3  =VA-VD = [1/C1+1/C2+1/C3]          ....... (26) 
 
If V be the potential difference between A and D, then  

            VA - VD  = V 
From (26) we get 
V= (V1+V2+V3) = Q [1/C1+1/C2+1/C3]    ......(27) 

Three capacitor, only one capacitor placed between  A and D such that on given in charge Q,the 
potential difference between its plates become V , then it will be called equivalent capacitor.If its 
capacitance be C then  
 

 V = 
<
�    ....... (28) 

Comparing equation (27) and (28), we get 
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<
�  =    Q [1/C1+1/C2+1/C3]     or 1/C = 1/C1+1/C2+1/C3   .......(29) 

 
(i) Thus in series arrangement, “the reciprocal of equivalent capacitance is equal to the sum of 

reciprocal of the individual capacitor”. Infact the equivalent capacitance is even less than the 
lowest capacitance in series. 

(ii) The charge of each capacitor is same. 
(iii)The total potential difference applied across the combination is equal to the sum of potential 

difference across the individual capacitors,i.e.,V=V1+V2+V3. Therefore the series 
arrangement is used to divide a high voltage (which cannot be tolerated by single 
capacitor)among several capacitors. 

 

Remarks: If n capacitors of capacitance C1, C2, C3, ------------Cn are connected in series,the net 
capacitance C will be given by 

1 2 3

1 1 1 1 1
............

nC C C C C
= + + = +  

2. Parallel Arrangement: To increase the capacitance,the capacitors are connected in parallel 
in this combination the first plate of each capacitor is connect to a common point  A and 
second plate to another common point B. The point A is connected to electric source and 
point B is connected to earth. In figure 7 three capacitors of capacitance C1,C2,C3 are 
connected in parallel.  

 
 

 
 
 

Figure7 

 

Let a charge Q be given to point A by means of an electric source. The first plate of each 
capacitor will be at potential A and second plate will be at zero potential, because it is connected 
to each other. Clearly the potential difference between the plates of each capacitors. 

 VA - VB = VA = V(say) 
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The charge Q will be divided on capacitors C1, C2, C3 . 
The charge q1, q2, q3be the charge on capacitors C1,C2,C3 respectively. 

Q=q1+q2+q3                          ....... (30) 
            q1=C1V, q2=C2V,  q3=C3V 
 
Substituting these values in (30), we get 

Q=C1V+C2V+C3V                 ....... (31) 
 
If, in place all three capacitors,only one capacitor of capacitance C be connected between A and 
B;such that on giving it charge Q,the potential difference between its plates be V,then it will be 
called equivalent capacitor. 
If C be the capacitance of equivalent capacitor, then 

Q = CV                                   ....... (32) 
Comparing equations (31) and (32), we get 
 CV=    (C1+C2+C3) V 
            C= C1+C2+C3                   ....... (33) 
 
Thus in parallel arrangement 

(i) The equivalent capacitance is equal to the sum of capacitances of individual 
capacitors (C= C1+C2+C3). 

(ii) The total charge is equal to the sum of charges onindividualcapacitors                                 
(Q=q1+q2+q3). 

(iii)  The  potential difference across each capacitor is same . 
 

Remarks: If n-capacitors of capacitance C1,C2,C3-------Cn be connected in parallel, the net 
capacitance  

C=C1+C2+C3+-----------+Cn 
 

5.15 SPHERICAL CAPACITOR  
Aspherical capacitor consists of two concentric metallic spheres.A and B of radii a and b 
respectively (b>a) insulated from each other by dielectric of permittivity ԑ.   Let us find the 
capacitance of spherical capacitor in the following cases.  
Case (i).When the sphere is earthed. If  the inner sphere A be given a charge +Q,then a charge 
–Q will be induced on the inner surface of the sphere B and a charge +Q on the outer surface of 
outer sphere. As the sphere is earthed,the charge  +Q induced on the outer surface of outer sphere 
B will flow to the earth. 
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                        Figure8 

Now the electric field strength at a point P distant r from the centre O and within the concentric 
spheres is entirely due to the charge +Q on the inner sphere and is given by 
 

E   =  
�

��ԑ

<
�� r^ 

 

Where   r^ is the unit vector along OP  
The potential difference between two sphere is then,given by 
 

            V=-[ �. YZ¤
ã =− [ �

���
¤

ã . <
A� Z^. YZ 

 

            =  - -
<

��� [ �
A�

¤
ã dr  = 

<
��� o�

Ap 
           =

<
��� o�

¤ − �
ãp 

If K is dielectric constant of medium,then Ԑ =K Ԑ0 
From which the capacitance of spherical capacitor is given by  

C=
<
�    =  

<
æ

qçñè�o�
ò?�

Ôp=
��À�

o�

ò?�
Ôp    =    

��À�

o�

ò?�
Ôp    = 4�Ê�0 ¤ã

ã?¤ 

C=4�Ê�0 ¤ã
ã?¤ 

 
Case (ii). When inner surface is earthed: If charge +Q be given to the outer spherical shell B 
of innerand outerradii b and c respectively,the charge +Q is distributed into two parts (i) charge 
+Qi  spreads on the inner surface of radius b and (ii) charge +Q0 spreads on the outer surface of 
radius c such that 
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                                     Q=Qi+Q0  

Due to induction the Charge –Qi is induced on the inner sphere is earthed,the inner sphere is at 
zero potential. 
If the surrounding objects are at infinite distance from the outer sphere and at zero potential, also 
if the medium between the outer sphere and infinity of permittivity Ԑ, the electric field strength at 
a point for which  
 
 
 
 
 

 

 

 

 

 

            Figure 9 
 
 
r > c is 

0
0 2

0

1
ˆ

4
Q

E r
rπε

=
r

      …….(34) 

and electric field strength at a point for which a<r<b is 

2
0

1
ˆ

4
i

i

Q
E r

rπε
=

r
   …… (35) 

As the potential at infinity and also that of inner sphere is zero,the potential of outer shell may be 
written as  
 

V=-[ �


∞

. YZ=-
�

���
 [ <�
A�



∞

Ẑ. YZ 

=-  
<�

���
 [ �
A� YZ


∞
  =

�
���
 . <�

Ì     ....... (36) 

We have  V =  
<ó

��� o�
¤ − �

ãp     ....... (37) 

Comparing equation (36) and (37), we have 
 

�
      ���
 . <�

Ì   =     
<ó

��� o�
¤ − �

ãp 

 
<ó
<�   =  

À
Ì

¤ã
ã?¤….(38)  

As the total charge given to the shell B is Q=Q0+Qi, the capacitance of the arrangement is given 
by 
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C = 
<�ôæó�   =

<�ôæó�
  qçè�.æ�õ

   = 4��
µ o1 + <ó
<�p 

 

= 4πԐ0co1 + À
Ì . ¤ã

ã?¤p from equation (38) 

=    4πԐ0c+4πԐ0K
¤ã

ã?¤              ....... (39) 

If the outer sphere is surround by concentric earthed sphere of radius d, then capacitance of the 
system may be calculated by similar procedure,keeping d in place of ∞ in the integral of eq. (36) 
this result is  
 

C =  4πԐ0K
¤ã

ã?¤ + 4πԐ0
Ì�

�?Ì     ....... (40) 

 

5.16 CYLINDRICAL CAPACITOR  
The cylindrical capacitor consists of a long metal cylinder A of radius a surrounded by an 
earthed metallic concentric cylindrical shell B of inner radius b. The space between the two 
cylinders is small in comparison with their lengths and is filled with a dielectric of permittivity ε.  
If the charge +Q is given to the inner cylinder,then an equal charge –Q is induced on inner 
surface of outer cylinder and a charge +Q on the out surface of the outer cylinder. As the outer 
cylinder is earthed,the charge +Q induced on the outer surface of outer cylinder flows to earth. If 
the length l of the two cylinders is large compared with separation (b-a),the charge Q can be 
considered to be distributed uniformly over the two cylinders. The charge per unit length is thus 

λ=
<
L . 

The electric field strength at a point P in the space between the two cylinders at a distance r from 
the axis is entirely due to charge +Qon the inner cylinder and is directed radially away. It is 
given by 
 

E=
λ

���A Ẑ      ....... (41) 

 
The potential difference between the outer and inner cylinders i.e., the potential of the inner 
cylinder is now given by  

            V=-[ �. YZ¤
ã   = -[ λ

���A Z.ö¤
ã dr 

 

            =
λ

��� [ �
A

¤
ã dr 

 

            =
λ

��� log� ã
¤ 

The capacitance per unit length of cylindrical capacitor is given by so 
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                      C =
Ì÷¤Aø�Á�Aáù�åL�ùøå÷

Á�å�ùå�¤L��úúA�ùÌ�ã�åû��ùåû�ÌdL�ù��A 

 
λ

λ
qçè RPüýÔ

ò
  =  

��Ԑ

RPüýÔ
ò
                                                                                 ......... (42) 

If K is dielectric constant of medium between the places, thenԐ =Ԑ0K 
 

   C = 
��Ԑ
�
RPüýÔ

ò
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 

 
The capacity of the cylindrical conductor of the length l is , therefore, given by 

                                   Cl = 
��Ԑ
�R
RPüýÔ

ò
                                    ........ (43) 

 
This type of cylinder is of great practical importance. For example,coaxial cables consist of 
cylindrical metal shield a coaxial central conductor and an interposed dielectric. These are 
widely used in the transmission of high frequency signals. In their usethecapacitance introduced 
by them is taken into account. 
A submarine cable is also an example of cylindrical conductor. The copper cable forms the inner 
cylinder and sea water works as outer earthed cylinder. The insulating material plays the role of 
the dielectric between two cylinders. The capacitance per unit length of the submarine cable and 
co-axial cables is given by equation (42). 
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5.17 ENERGY STORED IN A CAPACITTOR  
Let us consider a capacitor of capacitance C which is given total charge Q coulombs in small 
instalments. Suppose during the process of charging, the charge at any instant on the capacitor is 

q.  At this instant the potential difference between the plates of the capacitor is v=
J
Ì. If a further 

charge dq is given to the capacitor,the work will have to be done against this potential difference. 
This work done is  
 

                      dW = v.dq =
J
Ì Y� o±²³µþ� = J

Ìp 
Therefore the total amount of work done in charging the capacitor from charge 0 to Q coulombs 
is  
 

W=[ J
Ì

<

 Y�   = 

�
Ì oJ�

� p<

=

<�
�Ì  joules                    ....... (44) 

If v is potential difference between the plates of the capacitor when it has charge Q, then  
 
                Q=CV 

                 W=
9��;�

�Ì   = 
�
����joules                                     ....... (45) 

This is energy stored in the capacitor .This energy resides in the dielectric. 
For a parallel plate capacitor having area of each plates A,separation between the plates d and the 
medium between the plates of permittivity Ԑ 

Capacitance C= 
ԐÃ
� ; and electric field strength,E=

�
� 

So that                 

                              W=
�
� . ԐÃ

� . 9�Y;� =  
ԐÜ�

� .�Y    ....... (46) 

Therefore the energy stored per unit volume in the electric field of strength E 

                         W =  
ԐÜ�

�  joules/meter3 =
Ԑ
���

� ��?:    ......(47) 

5.18  Terminal Questions 
Long type Questions: 

1. What do you understand by dielectric polarisation? Explain the electric field vector E, 
Electric polarisation vector P and Electric displacement vector D in a dielectric material 
and deduce a relation between them.  

2. Define displacement vector D and deduce relation between D and E.  
3. Deduce relation D = ε0E for dielectric material filled in parallel plate condenser.  
4. Derive an expression for the capacity of a parallel plate capacitor with space between the 

plates partly filled with of dielectric substance. 
5. Derive an expression for the energy stored by a charged capacitor. 
 

 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 112 

 

Short type Questions: 

1. What is dielectric? Give some examples. 
2. Define electric polarisation vector P and displacement vector D. 
3. What is the relation between vector P and vector E? What is unit of vector P? 
4. Differentiate between vector D, E and P. 
5. Write an expression for the capacitance of a parallel plate capacitor. On what factors does 

it depend? 
 

 

Objective type Questions: 

1. Unit of Polarisation vector Pis: 
(a) Coulomb    (b) Coulomb metre   (c) Coulomb/metre-2   (d) Newton/Coulomb 
2. Unit of Displacement vector Dis: 
(a)  Coulomb    (b) Coulomb- metre   (c) Coulomb/metre-2   (d) Coulomb/metre2 
3. Displacement vector D depends upon: 
(a) Charge (b) Medium     (c) Dielectric      (d) None of above 
4. Relation between Vector P and Vector E: 
(a) P =  χE ε0 E   (b) P = ε0KE   (c) P = χE E   (d) P = (χE-1)E 
5. The relation between the three electric vectors E, D and P is: 
(a) D=P+E   (b) D= P/E    (c)   D= εE+P     (d) D = ε (E+P) 
6. When a dielectric is introduced between the plates of a parallel plate air capacitor, its 

capacitance: 
(a) Decreases                  (b) increases             (c) remains unchanged 
(d) may decrease or increase depending on the nature of dielectric 
 

5.19  Answers 
                1. (c)         2. (d)          3.(c)        4. (a)       5. (c)       6. (b) 

 

5.20 SUGGESTED READINGS  
 1.  Electricity & Magnetism, D.C. Tayal, Himalaya publishing House 
 2.  Electricity, Magnetism and Electronics, S.I. Ahmad and K.C. Lal,  
Unitech House, Lucknow 
 3. Fundamental of Electricity and Magnetism,R.G. Mendiratta and B.K.Sawhney, East-West 

Press Pvt Ltd 
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UNIT 6  MAGNETIC MATERIALS, MAGNETIC 

SUSCEPTIBILITY, HYSTERESIS LOOP 

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Electric Susceptibility 

6.4 Relation Between Dielectric Constant and Dielectric Susceptibility     

6.5 Permittivity 

6.6 Microscopic view of polarization 

6.7 Kinds of polarizability 

6.7.1 Electronic polarizability 

6.7.2 Ionic polarizability 

6.7.3 Orientational polarizability 

6.8 Molecular Field or Lorentz Local Field in a Dielectric 

6.9 Clausius – Mossotti Equation 

6.10 Debye Equation or Langevin-Debye Theory of Polarisation in Polar Dielectrics 

6.11 Behaviour of Dielectric Material in an Alternating Electric Field: Complex Dielectric 

Constant 

6.12Terminal Questions 

6.13Answers  
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6.1 INTRODUCTION 
Mossotti and Clausius have done a systematic investigation about the dielectric properties of 
materials. They attempted to correlate the specific inductive capacity, a macroscopic 
characteristic of the insulator introduced by Faraday which is now popularly termed as dielectric 
constant with the microscopic structure of the material. Following Faraday in considering the 
dielectrics to be composed of conducting spheres in a non-conducting medium, Clausius and 
Mossotti succeeded in deriving a relation between the real part of the dielectric constantand the 
volume fraction occupied by the conducting particles in the dielectric. 
In the beginning of 20th century, Debye realized that some molecules had permanent electric 
dipole moments associated with them, and this molecular dipole moment is responsible for the 
macroscopic dielectric properties of such materials. Debye succeeded in extending the Clausius -
Mossotti theory to take into account the permanent moments of the molecules, which allowed 
him and others to calculate the molecular dipole moment from the measurement of dielectric 
constant. His theory was later extended by Onsager and Kirkwood and is in excellent agreement 
with experimental results for most of the polar liquids. Debye’s other major contribution to the 
theory of dielectrics is his application of the concept of molecular permanent dipole moment to 
explain the anomalous dispersion of the dielectric constant observed by Drude. For an alternating 
field, Debye deduced that the time lag between the average orientation of moments and the field 
becomes noticeable when the frequency of the field is within the same order of magnitude as the 
reciprocal relaxation time. This way the molecular relaxation process leads to the macroscopic 
phenomena of dielectric relaxation, i.e., the anomalous dispersion of the dielectric constant and 
the accompanying absorption of electromagnetic energy over certain range of frequencies. 

 

6.2 OBJECTIVE 
The Main objectives of the present unit are- 

• To define the electric susceptibility  
• To define the permittivity 
• To define the Polarizability and their types 
• To define about Claussius –Mossotti Equation 
• To Explain Debye Equation or Langevin-Debye Theory of Polarisation in Polar  

Dielectrics 
• Behaviour of dielectric material in an alternating electric field 

 

6.3 ELECTRIC SUSCEPTIVILITY 
When a dielectric material is placed in an electric field, it becomes electrically polarised. In most 
cases i.e. for isotopic dielectrics (whose electrical properties are identical in all directions), the 
degree of polarisation P is found to be proportional to the intensity of electric field E at a given 
point of dielectric provided the field is not very strong. 
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                        P∝ � 

P = χeE    ....... (1) 
P = ε0 χeE    ....... (2) 

 
The constant χe  is called the electric susceptibility of the dielectric material and vector E is the 
electric field within the dielectric. 
The total proportionality factor ε0 χ = χe is known as absolute susceptibility or dielectric 
susceptibility. 
The electric susceptibility of a dielectric may be defined as the ratio of the polarisation to the 
electric intensity in the dielectric. Since polarisation P equals the surface density of induced 
charge, the susceptibility may also be defined as the ratio of induced charge density to the 
electric intensity. 
 

Hence the units of susceptibility are those of surface density divided by electric intensity 

            χe= ε0 χ = 
\
Ü = 

��áL�âã/T���ûå�ù/��áL�âã    ....... (3) 

 
            χe = Coulomb2 / Newton-meter2 
 AlsoFarad = Coulomb2 / Newton-meter                                                        

[∵ volt =  Newton T�PQR and Farad = Coul./Volt]     
∴        χe = 

Þ¤A¤�
â�å�A     ....... (4) 

It value for vacuum is zero. The polarization of dielectrics whose molecules are permanent 
dipoles depend on temperature.   Hence such dielectrics show a dependence of susceptibility on 
temperature while non-polar dielectrics do not. 

 

6.4 RELATION BETWEEN DIELECTRIC CONSTANT AND 

DIELECTRIC   SUSCEPTIVILITY  
 
We have following two equations 

P = (K - 1) ε0E 
and     P = χ ε0E 
Hence by comparison of above two equations, we can write 
              χ = (K - 1)                                      or             K = χ + 1                         ....... (5) 
Equation (3) can also be written in another form by using relation χ = χe / ε0 

K = 1 + 
χý
ε�   ....... (6) 

 
The value of K for all dielectrics is greater than one. Since for empty space χe is zero, the value 
of K is 1. 
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6.5 PERMITTIVITY  
We have   D = K ε0E 
The product K ε0 is called permittivity of the dielectric and is represented by ε that is  
              ε = K ε0         ....... (7) 
in empty space K = 1, so that  ε = ε0. The quantity ε0 is therefore correctly described as 
‘permittivity of empty space’. 

Also                                                K = 
ε

ε�.......(8) 

K is also known as ‘relative permittivity’ of the dielectric.When a dielectric is placed in electric 
field, the distribution of field changes to a degree depending upon relative permittivity. 
Now, we can write 
D = K ε0E 
Or  D = εE 

Or     ε = 
�
Ü     ....... (9) 

Hence the permittivity of a dielectric medium is the ratio of electric displacement to the electric 
intensity in the dielectric. 

 
Problem 1: The electrical susceptibility of a material is 35.4x10-12C2N-1m-2. What are the value 
of the dielectric coefficient and the permittivity of the material? 
Solution: The dielectric coefficient k of a material is related to its electric susceptibility χe by 
                            K=1+χe /ε0 
                                = 1 + 35.4x10-12/ 8.85x10-12 
                                = 1+ 4= 5 
The permittivity is  
                                         ε = K ε0 
                                         = 5 (8.85 x10-12) 
                                         = 44.3x 10-12 coul2 / newton-m2 

 

6.6 MICROSCOPIC VIEW OF POLARIZATION  
When a dielectric substance is subjected to an external electric field E0 , the electric field acting 
on an atom or molecule within the substance is not the same as the external field. It is somewhat 
different. The calculation of electric field acting on an atom or molecule is a major problem of 
dielectric theory. We call this field local or internal electric field Elocal or Ei . It is this field which 
acting on an atom or molecule induces dipole moment Pi . Obviously, the induced dipole 
moment is proportional to the local electric field. 
  pi∝Elocal 
  pi=  ⍺Elocal 
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Here ⍺ is proportionality constant and is called polarisability. It is a microscopic parameter of 
dielectric and cannot be measured directly in laboratory. If the substance contains n 
atoms/molecules per unit volume then polarisation vector P is given by 
            p = n pi = n⍺Elocal 

 Unit of ⍺:                       ⍺ = 
Á
Ü =  Ì�áL.â�å�A

ä�Lå/â�å�A =  Ì�áL.
ä�Lå meter2 = farad.meter2 

 

6.7 KIND OF POLARIZABILITY  
The magnitude of polarisability is measure of ease with which an atom/molecule undergoes 
distortion under the action of an electric field. There are three kinds of polarisability: 
  

(i)  Electronic 
(ii)  Ionic or atomic 
(iii) Dipolar or orientational. 

6.7.1 Electronic Polarisability (⍺e) 
In absence of any electric field on an atom the centre of negatively charged electron cloud 
coincides with the centre of positively charged nucleus. So the dipole moment of atom is zero. 
When an electric field E0is applied on a dielectric, its constituent atoms experience electric field 
Elocal. Under the action of this field, electron cloud shifts slightly in a direction opposite to the 
electric field and nucleus in opposite direction. The nucleus being much heavier than the electron 
cloud, its shift is negligibly small. The centres of negative and positive charge no longer 
coincide. This charge separation is attended with an induced dipole moment. The charge 
separation also results in a force of attraction between them which opposes the action of the 
electric field as a result of which equilibrium is soon established. Let x be the separation of 
centres of positive and negative charge. The electric field of electron cloud at the location of 
nucleus is 

E = 
ρj

:ε� =  �
K
�πε�¤� =  Áó

�πε�¤� 

Here ρ = 
�


9� :⁄ ;π¤� is the volume density of charge, pi = Zex is the induced dipole moment Z = 

atomic number of atom, ⍺ = radius of atom. In equilibrium, E = Elocal 

Elocal = E = 
Áó

�πε�¤�
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Figure 1 (a) Centre of positive and negative charge coincide (b) The electric field creates a 
separation between of centres of positive and negative charge. 
 
The electronic polarisabilty ⍺e of the atom is given by  ⍺e = 

Áó
Ü��õò�= 4π ε0⍺3   ....... (10) 

This shows that electronic polarisability is proportional to the volume of the atom. 

6.7.2 Ionic (atomic) Polarisability(⍺i) 
 This kind of polarisability occurs in ionic solids which are made up of ions (NaCl, HCl). Let a0 
be the separation of ions in absence of electric field. Under the action of electric field the positive 
ions are pulled on one side and the negative ions on the other. Thus the separation of cautions 
and anions is increased. This creates an induced dipole moment. The induced dipole moment pi is 
proportional to the local field acting on the ions. 

pi = ⍺i Elocal ....... (11) 
 

where ⍺i is ionic polarisabilty. 

 

6.7.3 Orientational Polarizability (⍺0)  

The orientational contribution to polarizabilty arises when the substance is built up of molecules 
possessing permanent dipole moment. In the absence of external electric field, the dipole 
moments are randomly oriented in all directions. When an electric field is applied, this is a 
tendency for the permanent dipoles to orient (align) themselves in the direction of the applied 
field thus producing a net dipolemoment. This mechanism is called orientational dipolar or 
polarisability. The induced dipole moment is expressed as  
p0 = ⍺0Elocal  
Where p0 is the average value of induced dipole moment per molecule and ⍺0 is a constant called 
dipolar or orientational polarisability. Generally interfacial polarisability is neglected. 
Polarisability of such type is due to large number of defects in the structure of crystal (lattice 
vacancies, impurity centres, dislocation etc.) 
Thus, dielectric polarisation is a sum of three contributions 
P = Pe+ Pi + Po 
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Correspondingly ⍺ = ⍺e + ⍺i + ⍺0 
Or                                                  ⍺ = ⍺d + ⍺0 

Where ⍺d = ⍺e + ⍺i and called deformation polarisability. It results from the deformation of 
molecules caused by electric field. 
Non – polar molecules can have only deformation (electronic and ionic) polarisabilty while polar 
molecules can have both deformation as well as orientational polarisability. 
 

6.8 MOLECULAR FIELD OR LORENTZ LOCAL FIELD IN A 

DIELECTRIC  
The polarisabilty ⍺ as a scalar quantity and has the dimension of volume i.e., meter3. Each of the 
three types of polarisability is a function of frequency of the applied voltage. The electric field 
which is responsible for polarising a molecule of the dielectric is called themolecular field or 
polarising field. If the dielectric is a gas (whose molecules are at large distances from one 
another), the polarising field is simply the externally applied field. In case of solid or liquid 
dielectrics, however, the actual field acting on a molecule of a dielectric is different from the 
external field. It includes not only the external field but also the field produced exception of the 
molecule under consideration (because it will not be polarised by its own field). This is known as 
local or internal or microscopic electric fieldacting on a molecule and is responsible for the 
polarisation of this particular molecule. Lorentz (1909) was the first to evaluate this field and 
hence it is named after him. 

 
Figure 2 

 
The following method suggested by Lorentz can be used to calculate the local field at a 
molecular position. Let the dielectric sample be polarised placing it in the uniform electric field 
between two parallel plates of a capacitor (figure 2). Suppose we want to calculate the field at 
position A of the molecule assuming that this molecule is not present at all. We draw a sphere 
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around A, the size of which is big enough to contain a large number of molecules but small 
compared to the distance between the plates of the capacitor. The dielectric outside the sphere 
may be treated as a continuum of dipoles (macroscopic point of view). The molecules inside the 
sphere are, however, to be treated as individual dipoles. Now the local field at A is due to three 
sources: 
(i) The external field E0 which is determined by the free charges on the plates between which 

dielectric is placed.                  

E0 = 
¥
��,  

Where σ = free charge density on plates of capacitor. 
 

(ii) E2 is the field at centre (A) of the sphere due to the bound charges on its surface. In order to 
calculate it dS be a surface element of the sphere with polar coordinates (r, θ). The 
component of the electric polarisation P normal to dS is P cos θ. The induced charge density 
the field due to polarised molecules (dipoles) of the dielectric outside the sphere. 

 
To evaluate this contribution, the dielectric sample outside the sphere may be replaced by bound 
(induced) charges on the outer faces of the dielectric and also on the surface of the sphere as 
shown in fig. 
Let E1 be the depolarising field due to the bound charges on the outer faces of the dielectric and 

E2 be the field due to the bound charges on the surface of the sphere. Then 
'

1
0

E
σ
ε

= − , where σ’is 

the bound charge density. The negative sign signifies that E1 opposes E0. E2 shall be evaluated 
shortly. 
(iii) The field (E3) due to the polarised molecules within the sphere. This field is zero for many 

practical cases of gases, liquids and cubic crystals. We shall therefore ignore it here. 
Hence the total electric field at A may be written as 
Elocal = E0 + E1 + E2 

Elocal = 
¥
�� - 

¥′

��+ E2 

We know that the net macroscopic electric field within the dielectric is given by 

E = 
¥
�� - 

¥′

��     ....... (12)                              

Therefore,  Elocal = E + E2    ....... (13) 
 
Over dS is therefore P cos θ. The charge on dS is P cos θ dS where θ is the angle between 
direction of P (or E) is and the radius of the sphere. 
The field at A due to the charge on dS is 1/4πε0(P cos θ dS/ r2), where r is the radius of sphere. 
The field is directed from A to dS. The component of this field in the direction of E is                     

(  
�

�πε� 
\ �P� θ��

A� )cosθ =  
\Ì���θ��

�πε� A�  
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Figure 3 

 
Now, suppose that dS is a ring shaped element (shown shaded) of radius rsinθ and width rdθ on 
the surface of the sphere. The area of the element is  
dS = 2π(r sinθ) rdθ = 2πr

2 sinθdθ. 
The component of the field at A perpendicular to E due to this ring is zero, since such 
components are symmetrically distributed around the axis. The component of the field along the 
direction of E is 
 �µ�±�θY~

4πε
 Z� =  �µ�±�θZ�92π sinθYθ; 
4πε
 Z�  

=  �2ε
 µ�±�θ  sinθYθ 

The field E2 at A due to the entire induced charge on the surface of the sphere is  

E2 = [ \
�ε� 

�

 µ�±�θ  sinθYθ 

                                                            = 
\

�ε� [ µ�±�θ  sinθYθ
�


  

                                                            = 
\

�ε�  [-
Ì���θ

: ]0
π = 

\
:ε�  

In vector notation    E2 = 
Í

���  ....... (14) 

 
 Substituting E2 in equation (13) 

Elocal= E + 
Í

:ε�   ....... (15) 

This is the actual field at the position of a molecule within the dielectric and is called ‘Lorentz 
field equation.’ 
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6.9 CLAUSIUS-MOSSOTTI EQUATION  
Clausius and Mossotti tried to correlate the macroscopic properties of a dielectric with its 
microscopic character. They established a relation between the dielectric constant (a macroscopic 
parameter) and the molecular polarisability (microscopic parameter) of a non-polar dielectric. 
This relation is known as ‘Clausius-Mossotti Equation.’ 
The polarisabilty (⍺) of a molecule is the dipole moment (p) induced in the molecule per unit 
polarising (local) field. That is  

p = ⍺Elocal 

 if there are n molecules per unit volume of the dielectric, then the polarisation P is given by  
P = np = n⍺Elocal.  

We know that Elocal = E + 
Å

:ε�   , where E is the macroscopic field within the dielectric. 

∴P  = n⍺ (E + 
\

:ε� )    
Now, the polarisation P is related to the dielectric constant K by the equationP = (K - 1) ε0E. 
Then we have 

            (K - 1)ε0E = n⍺ [E + 
9À? �;ε� Ü

:ε� ]    

or         (K - 1)ε0 = n⍺ [1+ 
9À? �; 

: ]   = n⍺ (
Àz�

: ) 

 

or         ⍺ = 
 :�� 9À? �; �9Àz�;    ....... (16) 

 
This is known as the ‘Clausius – Mossotti Equation. If n is known, ⍺ can be calculated by 
measuring Kexperimentally. 

Equation (16) reduces in another simple form by using the relationK =
ε

ε�  . 
That is  

ε?ε� 
εô �ε� 

=
�⍺

 :ε�  

The magnitude of 
ε?ε� 

εô �ε� 
 or 

 9À? �; 
9Àz�;   is known as specific polarisation of a dielectric. 

The Clausius-Mossotti Equation can also be written interms of the dielectric suscepetibilty χe by 

puttingK = 1 + 
�ý
ε�  . That is  

⍺ = 
 :ε� � �ý�ýz :ε�   .....(17) 

The Clausius – Mossotti Equation has been verified experimentally for a number of gases 

(hydrogen etc.). Since ⍺ is constant for a particular gas, 
 ��  9À? �; 

9Àz�;    must be a constant. The value 

of n was varied by changing the pressure of hydrogen gas and the dielectric constant K was 

measured for various pressures. It was found that 
 9À? �; �9Àz�;  was independent of pressure, thus 

verifying the equation. 
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Limitation of the Clausius-Mossotti Equation 

In deriving above equation the field (E3) due to polarised molecule within the sphere is supposed 
to be zero because of the following assumption: 
(1) Since polarisation is considered as proportional to the field, it means the   
polarisation of the molecules is by elastic displacement only. 
(2) Absence of short range interaction. 
(3) Isotropy of the polarisability of the molecules. 
 All these condition are satisfied with neutral molecules having no constant dipoles i.e., non-
polar molecules. Thus the equation is valid for non-polar liquids and gases only. It does not hold 
for crystalline solids and polar molecules. 
 
Atomic Radius:  It can be shown that ⍺ is proportional to the cube of the radius of the molecule. 
Hence if K is found and n is known for a gas at a given temperature and pressure, the radius of 
the atom may be found for monoatomic gases. 
 

6.10 DEBYE EQUATION OR LANGEVIN-DEBYE THEORY OF 

POLARIZATION IN POLAR DIELECTRIC  
When a polar dielectric is placed in the electric field, two things happen. First, it displaces the 
centre of gravity of protons and electrons so that an extra dipole moment is induced giving the 
electronic polarisability. For the moment, we shall ignore this induced dipole contribution, but its 
effect will be added later. Second, the individual molecules experience torque which tends to 
align them with the field. But the alignment is not complete because of the thermal motion of the 
molecules which favour random orientations. The average alignment produced gives rise to a net 
dipole moment per unit volume. If the temperature of the specimen is raised, the polarisation 
becomes even smaller due to the increase in thermal agitation of the molecules. Thus, for polar 
dielectrics, the orientation polarisability and hence the dielectric constant and the electric 
suscepetibility do depend on temperature.  
Let us now calculate the net dipole moment per unit volume created by alignment of the 
molecules at a temperature T. Let n be the number of molecules per unit volume of the specimen 
and θ be the angle which the permanent dipole moment p0of a molecule makes with the 
polarising field E (Here E means Elocal, the effective electric field for simplicity we avoid the 
subscript ‘local’).      
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Figure 4 

 
The potential energy of this molecule in the field is  � =  −�
.� =  �
�µ�±´   .....(18) 
The average effective dipole moment per unit volume may be calculated from statistical 
probability law (Maxwell Boltzmann law) which states that at absolute temperature ToK, the 
probability of finding a particular molecular energy U is proportional to e

-U/kT
, where k is 

Boltzmann’s constant. 
Then the number of molecules (dipoles) per unit volume, dn, having energy and oriented at 
angles between θ and θ + dθ with respect to the direction of E is given by  
 Y³ = �þ?�/í�Y�   .....(19a) 
Where C is a constant and dω is the solid angle contained between θ and θ + dθ (figure 4). This 
angle is given by  

dω = 
A�ùø¤A�¤ã�åû��ùθ ��B θ z �θ

A�  

                                  = 
�� 9A ����;9A�θ;

A�  

     dω = 2�sin´Y´ 
Substituting this value of dω in equation we get 
                     dn = C

(p0E cosϴ)/kT
 2π sinθY´ 

Let us write 
Á�Ü
í�  =a and 2π’

c = C (a new constant). Then 

Y³ = �þ¤�P�θ. sin θ. Y´ 

The total number of molecules per unit volume is 

³ =   Y³ =  �′ þ¤�P�θ. sin θ. Y´�



 

 
Now each of the dn molecules has a component of dipole moment po cosθ along the direction of 
the field. The dipole moment of dn molecules along the field direction is thus  p0 cosθ dn. (By 
symmetry, the sum of the components at right angles of the field is zero). 
Average dipole moment in the direction of applied electric field is given by 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 125 

 

� =  total dipole moment in the direction of "ield
total number of dipoles  

 =  
[ Á��P�θ�ùç�

[ �ùç�
 = 

Á� [ �ò$%&θ�P�θ ���θ�θ
ç�
[ �ò$%&θ ���θ�θ

ç�
 

Putting cosθ = x,  – sin θdθ = dx we have 
 

� =  Á� [ K�ò'�K���
[ �ò'�K���

       = p0
�

�¤  °ln [ þ¤KYb�
?� ] 

 = p0 
�

�¤  °ln 9þ¤ − þ?¤) – ln a] 

 = p0o�òz ��ò
�ò?��ò − �

¤p 

            = p0kcoth a − �
¤n   .....(19b) 

= p0L(a)                                                                       .....(20) 

Where L(a)=coth a - 
�
¤ is called Langevin function. The polarisation P of the dielectric is 

P = n� = npoL(a) = npoocoth a − �
¤p   .....(21)                                                                                                                   

A plot of Langevin function L (a) against a is shown in the figure (5). For large value of     a =  
Á�Ü
í� i.e., at large field strengths or low temperature 

L(a) = kcoth a − �
¤n → 1.....(22) 

 So P→np0  = saturation value of polarisation. 
 
 

 
It means the maximum value of the dipole moment per unit volume can be produced in the 
dielectric when all the molecular dipoles are perfectly aligned in the field direction. Thus large 
fields and low temperature causes P to approach its saturation value. This is clear from the latter 
part of the curve. In practice, however, the dielectric would break down (i.e. would become 
conducting) at such large fields. 
At ordinary temperature, for fields even upto the dielectric strength a is small and the curve is 
linear. The dipole moment po of most polar materials is such that a<<1 (≈10-3) for a full range of 
field strengths. 
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Since it is the linear region, which is important, it is appropriate to expand L(a) in a power series 
of a and keep only the important terms. 

L(a) = kcoth a − �
¤n =  ¤

: - 
¤�
�� 

 Practically a is very small, hence, 

L(a) =  
¤
: 

Now equation (19) reduces to  

P = np0
¤
:  = 

ùÁ� � Ü
:í� .....(23) 

It follows from this equation that the polarisation P is linear function of polarising field E, as 
shown by the initial (Straight line) part of the curve. Thus a dielectric material containing polar 
molecules is, in general, linear. 
From equation (21), the electric susceptibility χe of the dielectric material is given by  

            χe = 
(� =

ùÁ� �
 :í� 

Thus the electric susceptibility and hence also the dielectric constant of a polar dielectric is 
inversely proportional to the absolute temperature. It is this feature which distinguishes a polar 
dielectric from a non-polar dielectric for which both the susceptibility and the dielectric constant 
are independent of temperature. 
Now, the polarisability is defined as the dipole moment of a molecule per unit polarising field. 
Therefore, the polarisability ⍺0 due to the alignment of the molecular dipoles of the polar 
dielectric is given by, from equation (21). ⍺0 = 

\
ùÜ =  ùÁ� �

 :í� 
This result has been derived by neglecting induced dipole moments and represents the 
orientational polarisability. In fact, the induced dipole moments (which are responsible for the 
polarisation of non polar dielectrics) are also present in polar dielectrics. They give rise to 
‘deformation polarisability, ⍺d’. Thus the total polarisability of a molecule of polar dielectric is ⍺ = ⍺d + ⍺0 

Or   ⍺ = ⍺d + 
Á� �

 :í�   .....(24) 

This equation is known as Langevin Debye equation and it has been of great importance in 
interpreting molecular structures. 
The magnitude of ⍺d for both polar and non-polar dielectrics is of the same order. At ordinary 
temperatures, ⍺0 is much larger that ⍺d. This is because the permanent dipole moments, where 
they exits, are enormously larger than any induced moment. This is why the dielectric constant 
for a polar dielectric is higher than that for a non-polar dielectric. For example, the dielectric 
constant of water is about 80, while a typical non-polar liquid might have a dielectric constant 
around 2. 
The above theory is valid for liquids and gases. In a solid dielectric the molecules are very 
density packed and so their mutual interactions cannot be ignored. 
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6.11 BEHAVIOUR OF DIELECTRIC MATERIAL IN AN 

ALTERNATING ELECTRIC FIELD: COMPLEX DIELECTRIC 

CONSTANT  
When a dielectric material is kept in an alternating field, the macroscopic electrical field E as 
well as the polarisation vector P and displacement vector D become time dependent. In general, 
the polarisation vector P lags in phase over the electrical field E and thereby D too. This 
phenomenon can be represented geometrically by representing them in Argand plane as below. 
Let the complex electric field be represented as 
�) =  �
þ*+å    .....(25) 
With peak value E0 and frequency ω, then the polarisation vector P is represented as �) =  �
þ*9+å?θ;....(26) 
Where θ is the phase angle. 
The displacement vector (complex) is defined as  ,- =  ε
�) +  �) 
                                                 = D0e

j(ωt - φ)  .....(27) 
   Now, the complex permittivity of the dielectrics defined as 

� . =  ,-�)  =  ,
�
 e?ωϕ 

Or      ε0Ê- =  ��
Ü� e?/ϕ   .....(28) 

Where Ê- is the complex dielectric constant. Ê- may be represented as Kr – jKi , where Kr and Ki 
are the real and imaginary parts of Ê.-  
Thus, with the help of equation (26), we have 

Kr – jKi =  
��

ε�Ü� e?*ϕ....(29) 

 
 

 
Figure 6 

 
   Now, equating real and imaginary parts, we have 

Kr = 
��

ε�Ü� cosϕ 
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and                              Ki = 
��

ε�Ü�  sinϕ.....(30) 

It can be shown that imaginary part of dielectric constant is related to the power loss in the 
dielectric, which is delivered by the source. The heating effect of water in an alternating electric 
field is an example of this.                                                        

 

6.12 TERMINAL QUESTIONS  
Long Type Question 

1. Define polar and non-polar molecules. Deduce Clausius –Mossotti relation for non-polar 
dielectrics.  

2. What is dielectric polarisation ? Give the Langevin’s theory of polarization in polar 
dielectrics. 

3. Explain Langevin-Debye theory of polarisation in polar dielectrics. Show that for polar 
dielectrics the susceptibility is inversely proportional to the absolute temperature. 

4. Differentiate between electronic, ionic and orientational polarisability. 
5.  

Short Type Questions 

1. Deduce relation between dielectric  constant and electrical susceptibility of dielectric. 
2. State Clausius-Mossotti relation. 
3. What is the Electronic polarisability ? 
4. What is the atomic polarisability ? 
5. What is the orientational polarisability ? 
6. Write Langevin-Debye equation of polar dielectrics. 
7. Write the Limtation of Clausius-Mossotti equation. 

 
Objective type questions 

1. Langenin’s Functions L(x) is :   
(a) Coth x + 1/x 
(b) Coth x-1/x 
(c) X coth x 
(d) Coth x-x 

2. Electric susceptibility of a polar dielectric at absolute temperature T is : 
(a) Directly proportional to T 
(b) Inversely proportional to T 
(c) Directly proportional to T3 
(d) Inversely proportional to T3 

3. Claussius- Mossotti equation does not hold for : 
(a) gases 
(b) liquid 
(c) crystalline solids 
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(d) none of these 
4. The relation between dielectric constant K and dimensionless electric susceptibility χe is : 

(a) K=1+ ε0 χe 
(b) K=1-  χe 
(c) K=1+  χe 
(d) K= ε0 χe 

 

6.13 ANSWERS 
Objective type questions:  

               1. (b)           2.(b)          3. (c)           4.(c)    
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7.1 INTRODUCTION 

The magnetic effects can be produced by a magnet or by a current carrying conductor. The 
region around a magnet or current carrying conductor, in which a magnetic needle experiences a 
torque and rests in a definite direction, is called ‘magnetic field’. A charge moving in a magnetic 
field experiences a deflecting force. Of course, if a charge moving through a point experiences a 
deflecting force, then a magnetic field is said to exist at that point. This field is represented by a 

vector quantity B112 , called magnetic field or magnetic induction.  The magnetic induction can be 
defined in terms of lines of induction as the number of lines of induction passing through a unit 
area placed normal to the lines measures the magnitude of magnetic induction or magnetic flux 

density B112. Obviously, in a region smaller is the relative spacing of the lines of induction, the 
greater is the magnetic induction. The tangent to the line of induction at any point gives the 

direction of magnetic induction B112  at that point. The lines of induction simply represent 

graphically how B112 varies throughout a certain region of space. In the present unit, you will study 
the force on a moving charge in simultaneous electric and magnetic fields, Biot-Savart law, 
magnetic force between current elements, Ampere’s circuital law and its applications. 

7.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand Lorentz force 
• apply Biot-Savart law 
• apply Ampere’s circuital law 
• solve problems using Biot-Savart law and Ampere’s circuital law 

7.3 LORENTZ FORCE 

Let us consider a charged particle of charge q which is moving with velocity v12 in a magnetic 

field B112, then the magnetic force acting on that charged particle is given by - 

F12 = q9v12 × B112)                                                                                           …..(1) 

The direction of F12 will be perpendicular to both the direction of velocity v12 and the direction of 

magnetic field B112. Its exact direction is given by the law of vector product of two vectors. 

The magnitude of magnetic force is given as- 

F = qvB sinθ                                                                                            …..(2) 

where θ is the angle between velocityv12 and magnetic fieldB112. 
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v12 
θ 

                                  +q                            B112 

                                                 Figure 1 

If the angle between velocity v12 and magnetic field B112 is 900 then- 

Fmax = qvB sin 900 = qvB  

i.e. if velocity v12 and magnetic field B112 are at right angle then the magnetic force acting on the 
charged particle is maximum that is equal to qvB. 

If θ = 00 or 1800 i.e. velocity v12 and magnetic field B112 are parallel to each other then- 

F = qvB sin 00 = 0 

i.e. if the charged particle is moving parallel to the magnetic field, it does not experience any 
force. 

If v = 0, then F = 0. This means that if the charged particle is at rest in the magnetic field, then it 
does not experience any force. 

If a charged particle is moving in space where both an electric field E112 and a magnetic field B112 are 
present, then the total force acting on the charged particle is called the Lorentz force. 

The electric force acting on charged particle, eF qE=
r r

                                                 .....(3) 

The magnetic force acting on the charged particle, ( )mF q v B= ×
r rr

 

 

The total force acting on the charged particle, e mF F F= +
r r r

 

                                                                             = q E112 + q9v12 × B112) 

orF12 = q[E112 + 9v12 × B112)]              .....(4) 

The force given by equation (4) is called the Lorentz force and the equation is known as Lorentz 
force equation. 

If a charged particle enters perpendicular to both the electric and magnetic fields, then it may 
cancel each other and therefore, the charged particle will pass undeflected. In this situation, 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 133 

 

F12 = q[E112 + 9v12 × B112)] = 0 

or                                               E112 = - 9v12 × B112)                                                                 .....(5) 

In magnitude, E = v ×B     or   v = 
�
Ä                                                                    .....(6) 

Thus a charged particle entering in simultaneous electric and magnetic field may pass 
undeflected. Such an arrangement of simultaneous electric and magnetic fields is called velocity-
selector. Because the charged particle of only specified velocity given by v = E/B can pass 
undeflected. The particle of velocity v < E/B will be deflected towards electric force and those 
with velocity v > E/B will be deflected towards magnetic force. 

7.4 BIOT-SAVART LAW 
Oersted’s experiment showed that a current-carrying conductor produces a magnetic field around 
it. French scientists Biot and Savart, in the same year 1820, performed a series of experiments to 
study the magnetic fields produced by various current-carrying conductors and formulated a law 
to determine the magnitude and direction of the magnetic fields so produced. This law is known 
as ‘Biot-Savart law’. 
Let us consider a conductor of an arbitrary shape carrying electric current i and P a point in 
vacuum at which the magnetic field is to be determined. Let us divide the conductor into 
infinitesimal current-elements. Let us consider a small current element XY of length dl.  
 

 

  

P’  •Y  ×   P 

                r                     θ         r  

 dl                  

                                                                     X 

 

 

 

 

 

      Figure 2 
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According to Biot-Savart law, the magnetic field dB produced due to this current element at 
point P at a distance r from the element is- 

(i) directly proportional to the current flowing in the element i.e. dB ∝ i 
(ii) directly proportional to the length of element i.e. dB ∝ dl  
(iii) directly proportional to sin of angle between current element and the line joining 

current element to point P i.e. dB ∝ sin θ 
(iv) inversely proportional to the square of the distance of the element from point P i.e. dB 

∝ �
�� 

Combining these, we get- 

dB ∝ �BR���θ

��  

or dB =
µ

�π

�BR���θ

�� .....(7) 

where, 
µ

�π
 is a dimensional constant of proportionality whose value depends upon the units used 

for the various quantities. It depends on the medium between the current element and point of 
observation (P). Here, µ is called the permeability of medium. Equation (7) is called Biot-Savart 
law. The product of current i and the length of element dl i.e. idl is called the current element. 
Current element is a vector quantity; its direction is along the direction of current.  

If you place the conductor in vacuum or air, then µ is replaced by µ0and thus  Biot-Savart law 
can be written as- 

                                             dB = 
0�
�π

�BR���θ

�� .....(8) 

µ0 is called the permeability of free space or air.Its value in the SI system is assigned as- 

µ0 = 4π × 10-7 weber/ampere-meter (WbA-1m-1) 

Thus,
µ��π

= 10-7 WbA-1m-1 

µ0 or 
µ��π

 may also be expressed in Newton/Ampere2 (N/A2).  

The direction of magnetic field is perpendicular to the plane containing current element and the 
line joining point of observation to current element. Therefore, in vector form, Biot-Savart law 
can be expressed as- 

Y112 = 
µ��π

�B R2×�12
��  .....(9) 
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The resultant magnetic field at P due to the whole conductor can be found by integrating 
equation (9) over the entire length of the conductor. Thus 

B112 = [ YB112 

Direction of magnetic field dB:The direction of magnetic field Y112 is perpendicular to both the 

current element idl
r

 and the position vector r2 of point P relative to current element and may be 
found by the law of vector cross product or by Maxwell’s right hand screw rule. Thus in figure 2  
the direction of magnetic field at point P is shown by × (cross) i.e. vertically inward (downward 
perpendicular to the plane of the paper) and at point P’, the direction of magnetic field is shown 
by •(dot) i.e. vertically outward(upward perpendicular to the plane of the paper). 

7.4.1 Maxwell’s Right Hand Screw Rule: 

If we hold the screw driver in our right hand and rotate a screw in such a way that the point of 
screw moves along the direction of electric current in the conductor, then the direction of rotation  
of the thumb will be the direction of magnetic lines of force. 

 

 

 

                                                                  i 

 Magnetic lines of force 

 

Current carrying conductor 

 

 

 

                                                              Figure 3 

7.4.2 Comparison of Coulomb’s Law and Biot-Savart Law 

A current generates a magnetic field in the surrounding space while a stationary charge generates 
an electric field.  Coulomb’s law gives the electric field due to a distribution of charges while 
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Biot-Savart law gives the magnetic field due to a current element. According to Coulomb’s law, 
the magnitude of electric field at a point distant r due to a charge element dq is given as- 

                                                                  dE = 
�

����
�J
A�  

According to Biot-Savart law, the magnitude of magnetic field at a point distant r due to a 
current element i dl is given as- 

                                                                 dB = 
0�
�π

�BR���θ

��  

where θ is the angle between the length of the element and the line joining the element to the 
point. 

We, thus, see that Biot-Savart law is the magnetic equivalent of Coulomb’s law and both are 
inverse square laws. However, these two laws differ in certain respect. The charge element dq is 

a scalar while the current element i dl is a vector ( idl
r

) whose direction is in the direction of the 
current. According to Coulomb’s law, the magnitude of electric field depends only upon the 
distance of the charge element from the point. According to Biot-Savart law, the magnitude of 
magnetic field at the point also depends upon the angle between the current element and the line 
joining the current element to the point. Secondly, according to Coulomb’s law, the direction of 
electric field is along the line joining the charge element and the point. According to Biot-Savart 
law, the direction of magnetic field is perpendicular to the current element as well as to the line 
joining the current element to the point. 

Example 1:  An electron moving with velocity 5×107 m/sec enters a magnetic field of 1 Wb/m2 
at an angle of 900 to the magnetic field. Estimate the magnetic force acting on the electron. 

Solution: Here v = 5×107 m/sec, B = 1 Wb/m2, θ = 900 , q = e = 1.6×10-19 C 

Using  F = qvB sinθ 

F = 1.6×10-19×5×107×1×sin900 

= 8×10-12 Newton 

Example 2:A proton is moving northwards with a velocity of 3×107 m/sec in a uniform magnetic 
field of 10 Tesla directed eastward. Find the magnitude and direction of the magnetic force on 
the proton. Charge on proton= 1.6×10-19 C 

Solution: Given v = 3×107 m/sec, B= 10Tesla, q = 1.6×10-19 C 

The magnetic force on proton F = qvB sinθ 

 = 1.6×10-19×3×107×10×sin 900 = 1.6×10-19×3×107×10×1 = 4.8×10-11 Newton 
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The magnetic field is directed eastward and the direction of motion of proton is northward i.e. 
the direction of flow of current is northward. By Fleming’s left-hand rule, the force on the proton 
will be directed vertically downwards. 

Self Assessment Question (SAQ) 1:An electron is moving vertically upward with a speed of 
2×108 m/sec. Find out the magnitude and direction of the force on the electron exerted by a 
horizontal magnetic field of 0.50 Wb/m2 directed towards west? Also calculate the acceleration 
of the electron. 

Self Assessment Question (SAQ) 2:An electron moving with velocity v12 along +x-axis enters a 

uniform magnetic field B112 directed along + y-axis. What is the magnitude and direction of the 
force on the electron? 

Self Assessment Question (SAQ) 3:A 2 MeV proton is moving perpendicular to a uniform 
magnetic field of 2.5 Tesla. Find the force on the proton. The mass of proton = 1.65×10-27 Kg. 

Self Assessment Question (SAQ) 4: Choose the correct option- 

The force on a charged particle moving in a magnetic field is maximum when the angle between 
direction of motion and field is- 

(i) 450(ii) 1800(iii) zero                        (iv) 900 

Self Assessment Question (SAQ) 5: Choose the correct option- 

A moving electric charge produces- 

(i) electric field only (ii) magnetic field only     (iii) both electric and magnetic fields    (iv) 
neither of these two fields 

7.5 MAGNETIC FORCE BETWEEN TWO PARALLEL 

CURRENT CARRYING CONDUCTORS 

Let us consider two long, straight and parallel current carrying conductors PQ and RS separated 
by a distance r. Let i1 and i2 be the currents flowing in two conductors in the same direction 
respectively. Now, let us find expression for the force acting between the conductors. 

The magnitude of the magnetic field at a point P on conductor RS is – 

                                                                   B = 
µ��π

���
�  

By Maxwell’s right hand screw rule, the direction of this field is perpendicular to the plane of the 
page directed downward. 

      P                               R 
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                                          i1 i2 

 

 

 

                                            Q                      r  

                                             

                                                              Figure 4 

 

Obviously, the conductor RS is situated in magnetic field B perpendicular to its length. It, 
therefore, experiences a magnetic force. Using formula, F = iBl sinθ, the magnitude of magnetic 
force acting on a length l of conductor RS is given as- 

F = i2 B l sinθ = i2
µ��π

���
� l sin 900 

Or                                                        F = 
µ��π

�����R
�                                                         .....(10) 

The force per unit length of conductor RS is given by- 

                                                            F/l = 
µ��π

�����
�                                                       .....(11) 

By Fleming’s left hand rule, the direction of this force is towards conductor PQ if i2 is flowing in 
the same direction as i1(Figure 4). Similarly, the force per unit length of conductor PQ due to 

current i2 in conductor RS will be same i.e. F/l = 
µ��π

�����
�  and is directed towards conductor RS . 

Thus, if the currents are in the same direction, then the nature of the force is attractive. The two 
conductors will have a tendency to move towards each other. If the two ends of the conductors 
are fixed, then the shape of two conductors will be concave. 

If the direction of currents in two conductors is opposite, the force on two conductors will be 
outwards i.e. repulsive in nature (Figure 5) and now the conductors will repel to each other. If the 
ends of two conductors are fixed, then the shape of these conductors will be convex.  
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                                             Q S 

 

 r 

                                                               Figure 5 

 

 

7.5.1 Definition of Ampere:  

The force of attraction or repulsion between two long, parallel and straight conductors in vacuum 
has been used to define ampere. 

                                                              F/l = 
µ��π

�����
�  

Let i1= i2 = 1 Amp. and r = 1 meter,  then  

                                                                F/l = 
µ��π

���
�  = 1 ×10-7× 

�×9�;�
�  

= 2 × 10-7 N/meter  

Thus, 1 ampere is the current which when flowing in each of two infinitely long parallel 
conductors 1 meter apart in vacuum produces between them a force of exactly 2 × 10-7 N/meter 
of length. 
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Example 3: Estimate the force per unit length on a long straight wire carrying a current of 4 
Amp due to a parallel wire carrying a current of 6 amp. If the direction of currents in two wires is 
same, then find the nature of force acting between them. The distance between the wires is 3 cm. 

Solution: Given i1 = 4 amp, i2 = 6 amp, r = 3 cm = 3 × 10-2 m 

Using formula F/l = 
µ��π

�����
� , we get- 

Force per unit length F/l =  1× 10-7×
�×�×�
:×�
�� 

= 1.6×10-4 N/m-1 

Since the direction of currents in two wires is same, therefore the force acting between them is 
attractive in nature. 

Example 4:Two parallel wires, 1 m apart, carry currents of 1 amp and 3 amp in opposite 
directions. Calculate the magnitude and nature of force acting between them on a length of 2 m. 

Solution: Given r = 1 m,  i1 = 1 amp, i2 = 3 amp, l = 2 m 

Using F = 
µ��π

�����R
� , we get- 

F = 1× 10-7×
�×�×:

� ×2  

= 12×10-7 N/m  (repulsive i.e. away from each other) 

Self Assessment Question (SAQ) 6:The parallel wires each of length 200 cm and carrying a 
current of 0.4 amp in the same direction, are kept 40 cm apart in air. Find the force per unit 
length on each wire. 

Self Assessment Question (SAQ) 7:“Two parallel wires carrying current in the same direction 
repel each other”. Is this statement true or false? Give reason. 

7.6 AMPERE’S CIRCUITAL LAW 

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed 
path is equal to µ0 times the net current enclosed by the path” i.e. 

∮ B112. dl1112 = µ0 i                                                      .....(12) 

where i is the current enclosed by the path. 

Let us suppose that the magnetic field induction B arises due to a long wire carrying a current of 
i ampere. Now let us consider a circular path of radius r centred on this current carrying wire. 
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The magnitude of magnetic induction at any point P on the circular path is given by- 

                                                              B = 
µ��π

��
�                                                               .....(13) 

For all points on the circular path, the magnetic induction B112 has the same magnitude given by 
equation (13) and it is parallel to the tangent to the circular path. Therefore, the line integral of 
the magnetic induction B around the circular pathcentred on the current carrying wire is given 
by- 

∮ B112 dl = ∮ B112dl = ∮ µ��π

��
� rdθ 

                                                                = 
µ��π

2i ∮ δθ 

= 
µ��π

2i (2π) = µ0 i 

Thus we have-                                         ∮ B112. dl1112 = µ0 i 

The sign of integral depends upon the direction in which the current is enriched. The sign is 
positive if the path followed for line integral is parallel to B and negative if the path followed is 
anti-parallel. 
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If the path enclosing the current is not circular but is irregular of any shape, then we divide the 
path into large number of small elements. Ampere’s law holds for closed path of any shape.  

7.6.1 Differential form of Ampere’s Law 

Ampere’s circuital law can be expressed in terms of magnetic field intensity (H112). We know that- 

B112 = µ0H112 

Therefore from equation (12) we have- 

∮ μ
H112. dl1112 = µ0 i       

Or                                                     ∮H112. dl1112 =  i                                                         .....(14) 

But current     i = ∬J2. dS11112 .....(15) 

Where J2 is the current density and dS11112 is small element of area at the point of current density J2 
inside the closed path. 

Therefore, equation takes the form as- 

∮H112. dl1112 = ∬J2. dS11112  .....(16) 

Using Stoke’s theorem, we have- 

∮H112. dl1112 = ∬ curl H.1112 dS11112 

Therefore, equation (16) becomes- 

∬ curl H.1112 dS11112 =∬J2. dS11112 

i.e.                                                   ∬9curlH112 - J2).dS11112 = 0                                             .....(17) 

As the surface is arbitrary, therefore integrand must vanish i.e. 

                                                    curl H112 - J2 = 0 

or                                                 curl H112=J2                                                                   .....(18) 

Multiplying both sides by µ0 in equation (18), we get- 

µ0curl H112=µ0J2 
or                                              curl µ0H112 = µ0J2 
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or                                              curl B112 = µ0J2                                                                   .....(19) 

Equation (18) or (19) is the differential form of Ampere’s circuital law. The above relation (19) 

indicates that the magnetic induction at a point is derived from the given value of J2 at that point 

by integration. However this equation is not enough to derive B112 at a point because for the same 

value of J2 at the point another term may be added to B112. We, therefore, need another condition. 

7.6.2 Applications of Ampere’s Law 

Magnetic Field due to Long Straight Current Carrying Wire 

Let us consider a long straight wire carrying a current i. From the symmetry of wire, it is clear 
that the magnetic lines of force are concentric circles centred on the wire 

 

 

 

                                                            i 

dl1112 

 P 

 

r 

 

                                                           Figure 7 

Let P be a point at distance r from the wire at which magnetic field is to be required. Let us 
consider a circular path of radius r passing through P. By symmetry, the value of magnetic field 

is same at each point on the circular path. B112 and dl1112 are always directed along the same direction. 

Therefore, the line integral of B112 along the boundary of circular path is- 

∮ B112. dl1112 = [ Bdl cos 0
 = B [ dl = B (2πr) 

Using Ampere’s circuital law- 

∮ B112. dl1112 = µ0 i 
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Putting for  ∮ B112. dl1112, we get- 

                                                       B (2πr) = µ0 i 

Or                                                     B = 
µ��π

�
� 

Or                                                    B = 
µ��π

��
�  

This is the required magnetic field. 

7.7 MAXWELL CORRECTION IN AMPERE’S LAW 

Let us examine the validity of this equation for time varying fields. Since divergence of curl of 

any vector quantity is always zero, therefore div curl H112  = 0. Then equation (18) curl H112=J2   
implies- 

                                                                     div J2 = 0                                      .....(20) 

We knowthe equation of continuity- 

                                                                   div J2 + 
Öρ

Öî = 0                                .....(21) 

or                                                               div J2 = - 
Öρ

Öî                                    .....(22) 

Here ρ is the charge density. 

From equations (20) and (22), we get- 

Öρ

Öî = 0 

or                                                                   ρ = constant 

i.e. charge density is static. Thus we conclude that Ampere’s circuital law ∮H112. dl1112 =  i is valid 
only for steady state conditions and is insufficient for the cases of time varying fields. Hence to 
include time varying fields, Ampere’s law must be modified. Maxwell investigated 

mathematically how one could alter Ampere’s equation ∮H112. dl1112 =  i so as to make it consistent 
with the equation of continuity. 

Maxwell assumed that the definition of current density J2 is incompleteand hence something say JB1112must be added to it.Thus, the total current density, which must be solenoidal, becomesequal to J2 + JB1112. Using this assumption, equation (18) curl H112=J2becomes- 

                                                                curl H112=J2  + JB1112                                     .....(23) 
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Now let us identify JB1112 . Let us take divergence of equation (23) as- 

                                                div curl H112= div (J2  +  JB1112  )                                      .....(24) 

But we know that the divergence of curl of any vector quantity is always zeroi.e. div curl H112  = 0, 
therefore, the above equation takes the form as- 

                                                     div (J2  +  JB1112  )  = 0   

or                                                  div J2 + div  JB1112 = 0 

or                                               div  JB1112 = - div J2                                                        .....(25) 

We know the  equation of continuity- 

                                                                   div J2 + 
Öρ

Öî = 0                                 

or                                                               div J2 = - 
Öρ

Öî 

Putting for div J2 in equation (25), we get- 

                                                                   div  JB1112 =  
Öρ

Öî                                                  .....(26) 

But by differential form of Gauss theorem we have- 

                                                                    div D112 = ρ                                                     .....(27) 

where D112 is electric displacement vector. 

Using equation (27) in equation (26), we get- 

                                                                  div  JB1112 =  
Ö>B�8 9112@

Öî  

= div kÖ9112
Öî n 

or                                                                     JB1112    =    kÖ9112
Öî n                                          .....(28)   

Therefore, the modified form of Ampere’s law becomes- 

                                                                     curl H112= J2  +  JB1112  = J2  + kÖ9112
Öî n           .....(29) 

The additional term which Maxwell added in Ampere’s circuital law to include time varying 

fields is called ‘displacement current’ because it arises when electric displacement vector D112 
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changes with time. By the addition of this term Maxwell assumed that this term i.e.  

displacement current is as effective as the conduction current J2 for producing magnetic field. 

Characteristics of displacement current 

(a) Displacement current is a current only in the sense that it produces a magnetic field. It 
has none of the other properties of current since it is not related with the motion of a 
charge.  

(b) Displacement current has a finite value even in a perfect vacuum where there is no charge 
at all. 

(c) The magnitude of displacement current is equal to the rate of change of electric 

displacement vector i.e. JB1112    =    kÖ9112
Öî n 

(d) Displacement current in a good conductor is negligible as compared to the conduction 
current at any frequency less than optical frequencies. 

Example 5:A 50 V voltage generator at 20 MHz is connected to the plates of air dielectric 
parallel plate capacitor with plate area 2.8 cm2 and distance of separation is 0.02 cm. Find the 
maximum value of displacement current density and displacement current. 

Solution: Vo = 50 Volt, f = 20 MHz = 20×106 Hz, S = 2.8 cm2 = 2.8×10-4 m2 , d = 0.02 cm = 
2×10-4 m 

V = Vo sin ωt = Vo sin 2πft = 50 sin ( 2π×20×106 t ) 

Displacement current density JB1112    =    kÖ9112
Öî n 

                                                        = 
Ö>ε��112@

Öî  = 
Ö
Öî kε
 �

Bn 

= 
ε�
B

Ö�
Öî  

 = 
ε�
B

Ö·�
 ��� 9 ��×�
×�
w î ;¸
Öî  

= 
ε�
B {50cos (2π × 20 × 10� t;}× 2π × 20 × 10� 

= 
y.y�×�
���

�×�
�q {50 cos(2π × 20 × 10� t;}× 2π × 20 × 10� 

 = 277.8 cos ( 4π×107 t) Amp/m2 

Displacement current id = Jd×S= 277.8 cos ( 4π×107 t)×2.8×10-4 

=0.0778×2.8 cos( 4π×107 t) Amp  
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Self Assessment Question (SAQ) 8:Choose the correct option- 

The concept of displacement current was proposed by- 

(i) Faraday                       (ii) Gauss                           (iii) Ampere                   (iv) Maxwell 

Self Assessment Question (SAQ) 9:Choose the correct option- 

Maxwell’s modified Ampere’s law is valid- 

(i) only when electric field does not change    (ii) only when electric field varies with time 

(iii) in both of the above situations        (iv) none of these 

Self Assessment Question (SAQ) 10:Choose the correct option- 

The displacement current arises due to- 

(i) negative charges only   (ii) positive charges only    (iii) both negative and positive charges  
(iv) time varying electric field 

Self Assessment Question (SAQ) 11:Choose the correct option- 

Displacement current goes through the gap between the plates of a capacitor when the charge of 
a capacitor is- 

(i) zero             (ii) decreasing            (iii) increasing         (iv) remaining constant 

Self Assessment Question (SAQ) 12:Choose the correct option- 

Displacement current is a current only in the sense that- 

(i)  it produces a magnetic field (ii) it produces electric field      (iii) it produces both fields   (iv) 
none of these 

7.8 SUMMARY 

In this unit, you have studied about Lorentz force and Biot-Savart law. You have studied that a 
current carrying conductor produces magnetic field around it. You have also studied about the 
magnetic force between two current carrying conductors and established its expression and 
deduced the definition of ampere. You have seen that the conductors attract each other if currents 
in them are in the same direction and repel each other if currents are in opposite directions. In 
this unit, you have studied and analyzed Ampere’s circuital law and Maxwell’s correction in it. 
According to Ampere’s circuital law, the line integral of magnetic induction around a closed path 
is equal to µ0 times the net current enclosed by the path. You have also seen that Ampere’s law 
holds for closed path of any shape. You have known about displacement current and its peculiar 
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characteristics. To present the clear understanding and to make the concepts of the unit clear, 
many solved examples are given in the unit. To check your progress, self assessment questions 
(SAQs) are given place to place. 

7.9 GLOSSARY 

Magnetic field- the region surrounding a magnetic 

Magnetic induction- a vector which specifies the magnitude and direction of magnetic field at    a 
point 

Simultaneous – concurrent, coincident 

Electric force- the force experienced by a charge placed at a point in an electric field  

Magnetic force- the force experienced by a charge in a magnetic field 

Infinitesimal- minute, tiny 

Vacuum- emptiness, vacuity 

Characteristics- features, qualities 

7.10 TERMINAL QUESTIONS 

1. Explain the magnitude and direction of the force acting on a charge moving in a magnetic 
field. When is the force maximum and when minimum?   

2. Explain Biot Savart law. 

3. Establish the expression for magnetic force acting between two long, parallel and straight 
current carrying conductors. 

4. Both  the electric and magnetic field can deflect an electron. What is the difference between 
these deflections? 

5.  Explain Ampere’s circuital law. Give its significance. Derive its differential form. 

6.  Explain Maxwell’s correction in Ampere’s circuital law. 

7. Explain the concept of Maxwell’s displacement current and show how it led to the 
modification of the Ampere’s law. 

8. Obtain the generalized form of Ampere’s circuital law. Comment on the concept of the 
displacement. 

9.  Throw the light on characteristics of displacement current. 
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10. Using Ampere’s circuital law, establish the expression of magnetic field due to a long current 
carrying wire. 

11. Give a comparison between Coulomb’s law and Biot-Savart law.  

7.11 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given v = 2×108 m/sec, B = 0.50 Wb/m2 , q = e = 1.6×10-19 C, m= 9×10-31 Kg 

Using F = qvB sinθ, we get- 

F = 1.6×10-19×2×108×0.50×sin 900 = 1.6×10-11 N  (towards north, Using Fleming’s left    hand 
rule) 

Using  F = ma 

Or a = F/m = 1.6×10-11/ 9×10-31 = 1.8 ×1019 m/sec2 

2.  Using F = qvB sinθ = evB sin 900 = evB 

    Using Fleming’s left hand rule, the direction of the force is along –z- axis. 

3. Given K = 2MeV = 2×106×1.6×10-19= 3.2×10-13 J, B = 2.5 T, m = 1.65×10-27 Kg 

    K = 
�
� mv2   or v = ���

T  = ��×:.�×�
���
�.��×�
���  = 6.23×104 m/sec2 

    Using F = qvB sinθ = 1.6×10-19×6.23×104×2.5×sin 900 = 7.88×10-12 N 

4. (iv) 900 

5. (iii) both electric and magnetic fields     

6. Given l = 200cm = 2 m, i1 = i2 = 0.4 amp, r = 40 cm = 0.4 m  

    F/l = 
µ��π

�����
�  = 1× 10-7×

�×
.�×
.�

.�  = 8×10-8 N/m (attractive) 

7. The statement is false because one current carrying wire will experience force of attraction due 
to the magnetic field produced by the other current carrying wire. 

8.  (iv) Maxwell 

9. (iii) in both of the above situations 

10. (iv) time varying electric field 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 150 

 

11. (ii) decreasing            (iii) increasing 

12. (i)  it produces a magnetic field 

Terminal Questions: 

4. The force exerted by a magnetic field on a moving charge is perpendicular to the motion of the 
charge; hence the work done by this force on the charge is zero and therefore the kinetic 
energy of the charge does not change. In an electric field the deflection is in the direction of 
the field, hence the kinetic energy changes. 
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8.1 INTRODUCTION 

In the previous unit, you have studied and learnt about Lorentz force, Bio-Savart law and 
magnetic force between current carrying conductors. In that unit, you have also studied about 
Ampere’s circuital law and Maxwell’s correction in that. In the previous unit, you have learnt 
about displacement current and its peculiar characteristics. In the present unit, you will learn 

about curl and divergence of magnetic inductionB112, vector potential and its importance, magnetic 
flux etc. You will also study about magnetic fields due to circular and solenoidal currents and 
establish the expressions for the field. When a current loop is placed in a uniform magnetic field, 
then it experiences a torque. In this unit, you will learn about this torque and establish an 
expression for the torque acting on that current carrying loop in a uniform magnetic field. 

8.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand curl and divergence of B112 
• understand vector potential and magnetic flux 
• calculate the magnetic fields for circular and solenoidal currents 
• understand torque on a current carrying loop and solve problems 

8.3 CURL OF <112 

The curl of a vector field at any point is defined as a vector quantity whose magnitude is equal to 
the maximum line integral per unit area along the boundary of an infinitesimal test area at that 
point and whose direction is perpendicular to the plane of the test area. The curl of vector field is 
sometimes called circulation or rotation. 

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed 
path is equal to µ0 times the net current enclosed by the path” i.e. 

∮ B112. dl1112 = µ0 i                                                      .....(1) 

where i is the current enclosed by the path. 

Let us consider a region in which there is a steady flow of charge. The current density in this 
region remains constant i.e. it does not change with time however its value may vary from place 
to place. Now let us consider a closed path in this region as shown in figure (1). The total current 
enclosed by this path is the flux of current density through the surface bounded by closed path 
i.e. the total current enclosed by the path given as- 

                                                                   i = ∬J2. dS11112                                                 …..(2) 
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where J2 is the current density and dS11112 is small element of area at the point of current density J2 
inside the closed path. 

Putting the value of i from equation (2) in equation (1), you get- 

∮ B112. dl1112 = µ0 [∬J2. dS11112 ] 

 

Using Stoke’s theorem, you can convert line integral into surface integral as- 

∬ curl B.1112 dS11112 = µ0 [∬J2. dS11112 ] 

∬°curl B112–µ0J2]. dS11112 = 0 

As the surface is arbitrary, therefore you have- 

curl 112 - µ0J2 = 0 

                                                             curl 112 = µ0J2                                                              …..(3) 

Thus the curl of 112 is equal toµ0 times current density. The above equation (3) is the differential 
form of Ampere’s circuital law.The above relation indicates that the magnetic induction at a 

point is derived from the given value of J2 at that point by integration. However this equation is 

not enough to derive B112 at a point because for the same value of J2 at the point another term may be 

added to B112. We, therefore, need another condition. 

8.4 DIVERGENCE OF  <112 

The divergence of a vector function at certain point is defined as the outward flux of the vector 
field per unit volume enclosed through an infinitesimal closed surface surrounding the point. The 
divergence of a vector function is scalar quantity. It should be noted that the divergence itself is 
simply an operator and has no physical meaning in itself. After operating on suitable physical 
vector functions, it represents various significant physical scalar quantities. If the divergence of 
any vector function in a region is zero, it means that the flux of the vector function entering any 
element of this region is equal to that leaving it. 

According to Biot-Savart law the magnetic field at a point due to a current element idl1112 at a point 
having position vector r2 relative to current element is given by- 

dB111112 = 
µ��π

� BR1112×�12
��                                                   …..(4) 

The magnetic field due to complete circuit current is given as- 
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B112 = 
µ��π

∮ � BR1112×�12
��                                                 …..(5) 

Taking divergence on both sides, you get- 

div B112  = ∇. B112  = ∇. =µ��π
∮ � BR1112×�12

�� >                                                …..(6) 

or                                             div B112  = 
µ��π

∮ ∇. =� BR1112×�12
�� > 

But∇ k�
�n = - 

�12
�� 

Hence the above relation can be written as- 

                                               div B112  = - 
µ��π

∮ ∇. ?idl1112 × ∇ k�
�n@ 

Using vector identity ∇. >A112 × B112@ = B112.>∇ × A112@- A112.>∇ × B112@, the above expression becomes- 

                                  div B112  = - 
µ��π

∮ ∇ k�
�n . >∇ × idl1112@- >idl1112@. ?∇ × ∇ k�

�n@                           …..(7) 

Now let us interpret the result. You that the magnetic field is specified at field point and the 

current element idl1112 is due to source point. The field point depends on variables (x,y,z) but on the 

other hand the field source idl1112 does not depend on variables (x,y,z), therefore it is obvious that  

∇ × >idl1112@ = 0                                                      …..(8) 

Also you know that the curl of gradient of a scalar function is always zero i.e. 

                                                     curl grad k�
�n  = 0      or ∇ × ∇ k�

�n = 0                         …..(9) 

 Now using relation (8) and (9) in equation (7), you get- 

                                         div B112  = - 
µ��π

∮ ∇ k�
�n . 0- >idl1112@. A0} = 0 

 i.e.                                                   div B112  = 0                                                                   …..(10) 

The above condition holds for all superposition of such fields or for the field of any distribution 
of currents. The equation (10) implies that the magnetic field is solenoidal. 

8.5 VECTOR POTENTIAL 

The vector identity div curl A
r

≡ 0 shows that the solution of the equation div B112  = 0 can be 
represented in the form as- 
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B112 = curl A112                                                               …..(11) 

The vector field  A112, the curl of which is equal to the magnetic field B112 is known as vector potential 

of a magnetic field B112. 

A112 will be specified uniquely only if its divergence as well as its curl is given. We choose  

                                                                      div A112  = 0                                                    …..(12) 

This choice is called Lorentz gauge- the gauging condition for the potential. The arbitrariness in 
the choice of the vector potential indicates that the vector potential plays only an auxiliary role 
and cannot be measured experimentally. 

Let us derive equation for vector potential. We know that ∇ × B112 = µ0J2 

Putting the value of B112 from equation (11), the above equation becomes- 

∇ × >∇ × A112@ = µ0J2 

Using vector identity   ∇ × >∇ × A112@= ∇>∇. A112@- 9∇. ∇;A112, the above equation becomes- 

∇>∇. A112@- 9∇. ∇;A112 = µ0J2 

Or                                                       grad div A112  - ∇�A112= µ0J2 
Using Lorentz gauge given by equation (12), the above relation becomes- 

                                                        0 - ∇�A112 =  µ0J2 
Or ∇�A112 =  - µ0J2                                                        …..(13)  

In terms of Cartesian components of A112, we can write- 

∇2Ax = - µ0 Jx 

∇2Ay = - µ0 Jy                                         …..(14) 

∇2Az = - µ0 Jz 

 

Each component of the vector potential thus satisfies Poisson’s equation (∇�φ =  − v
�� ) which 

has the solution as- 
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φ9r2; = 
�

����∭ v>�=@D�12?�=1112DdVE                                                         …..(15) 

If all currents are concentrated in a finite region of space, then by analogy with equation (15), the 
solution of equations (14) can be written as- 

 

                                             Ai9Z2; = 
0�
��∭ OE>�=@D�12?�=1112DdVE                                                       …..(16) 

where i stands for x, y and z. In vector form, we have- 

A1129r2; = 
0�
��∭ O2>�=@D�12?�=1112DdVE                                               …..(17) 

In a case of a filamentary current i through a differential length dl’ along the wire, we have- 

                                                  J dV' = (i/S)(Sdl’) = i dl’ 

Now the above equation becomes- 

dA1129r2; = 
µ��π

�k�′112nBR′

D�12?�′112D                                                         …..(18) 

Summing up over all volume elements of the filament, we get- 

A1129r2; = 
0�
��∭ �>�=@D�12?�=1112DdVE                                                …..(19) 

The components of A112 vary as 1/r, like electric potential, which does not diverge with in a charge 

distribution. As divergence of a curl of a vector is always zero and div B112 = 0 can be written as a 

curl of a vector and thus A112 is a vector. Due to these reasons A112 is called by the name of vector 
potential. 

8.6 MAGNETIC FLUX 

Let us consider a plane placedin a magnetic field. The magnetic flux linked with that plane is 

defined as the dot(scalar) product of magnetic field (B112) and the area of the plane (A112) i.e.  

                                                  The magnetic flux φ = B112.A112                                                …..(20) 

If the perpendicular to the plane makes an angle θ with the direction of magnetic field, then- 
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      The magnetic flux φ = BA cosθ                                      …..(21) 

 

                      Perpendicular to the plane 

 

                                                                             θ                                 B112 

 

 

 

 

 

 

                                                                         Figure 1 

From equation (21), you can write- 

 φ = (B cosθ) A                                                            …..(22) 

= component of the magnetic field perpendicular to the plane× area of the plane 

Thus, you can define the magnetic flux as the product of the component of the magnetic field 
perpendicular to the plane and the area of the plane. 

If you consider the plane perpendicular to the uniform magnetic field, then the product of the 
magnitude of the field and the area of the plane is called the magnetic flux φ linked with the 
plane i.e.  

                                                                         Φ = BA           (since θ = 00)                   …..(23) 

If infinitesimal small surface area (dS11112 ) is considered, then magnetic flux linked with that surface 
area is given as- 

                                                            dφ = B112.dS11112                          …..(24) 

The total magnetic flux linked with the entire surface- 
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                                                             φ = ∬B112. dS11112                          …..(25) 

φ is positive if the outward normal to the plane is in the same direction as B112 and is negative if the 

outward normal is opposite to B112. 

The SI unit of the magnetic flux φ is weber (Wb). 

Since from equation (23), you have- 

                                                                           B = φ/A 

Thus the unit of magnetic flux is also expressed in weber/meter2 ( Wb/meter2 ). That is why the 
magnetic field induction B  is also called the magnetic flux density. 

The CGS unit of magnetic flux is Maxwell. 

                                                                  1 weber = 108 maxwell 

The magnetic flux is a scalar quantity while magnetic flux density is a vector quantity. 

You may also express the magnetic flux in terms of the magnetic lines of force. We can represent 
a magnetic field by magnetic lines of force. If you draw limited lines of force so that in a 
magnetic field B = 1 Wb/meter2 only one line of force passes per meter2 through an area 

perpendicular to B112in a magnetic field  B = 2 Wb/meter2 only two lines of force pass per meter2 
perpendicular to B, and so on, then these lines are called the lines of flux. In a magnetic field the 
number of lines of flux passing per meter2through an area perpendicular to the magnetic field is 
equal to the magnetic flux linked with that plane. 

If θ = 900 i.e. the plane is parallel to the magnetic field, then no flux-line will pass through it and 
the magnetic flux linked with that plane will be zero. 

Example 1:  A coil having 1000 turn and area 0.20 meter2 is placed normally in a uniform 
magnetic field. The magnetic field changes from 0.20 Wb/meter2 to 0.60 Wb/meter2 uniformly 
over a period of 0.01 sec. Calculate the change in magnetic flux associated with the coil. 

Solution: Given Area of coil A = 0.20 meter2, B1 = 0.20 Wb/meter2, B2 = 0.60 Wb/meter2 

The magnetic flux φ = BA cosθ 

Since the coil is placed normally in a magnetic field, therefore θ = 00 

Therefore, the magnetic flux φ = BA cos 00 = BA 

The change in magnetic flux due to a change in magnetic field B- 
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                                                           ∆φ = (∆B)×A 

                                                                 = (B2 – B1 )× A = (0.60 - 0.20)×0.20 

                                                                 = 0.08 Wb 

Example 2:Find the magnetic flux linked with a rectangular coil of size 6 cm × 10 cm placed at 
right angle to a magnetic field of 0.5 Wb/meter2. 

Solution: Given, The area of coil A = 6 cm × 10 cm = 60 cm2 = 60× 10-4 meter2 = 6×10-3 meter2 

Magnetic field B = 0.5 Wb/meter2 

Since the coil is placed at right angle to a magnetic field, therefore the angle between the normal 
to the plane of coil and the direction of magnetic field θ = 00 

The magnetic flux linked with the coil φ = BA cosθ = 0.5×6×10-3× cos 00 = 3×10-3 Wb 

Example 3: 5.5× 10-4 magnetic flux lines are passing through a coil of electrical resistance 20 
ohm. If the number of magnetic flux lines reduces to 5×10-5 in a short time, find the change in 
magnetic flux. 

Solution: Given, Initial magnetic flux φ1 = 5.5× 10-4 Wb, Final magnetic flux φ2 = 5×10-5 

Therefore, the change in magnetic flux ∆φ = φ2 – φ1 

                                                                     = 5×10-5 - 5.5× 10-4 = - 5.0×10-4 Wb 

Self Assessment Question (SAQ) 1:Choose the correct option- 

The divergence of a vector quantity is always- 

(i) a vector                       (ii) a scalar              (iii) sometimes a scalar and sometimes a vector   
(iv) none of these 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The curl of a vector function is always- 

(i) a vector                          (ii) a scalar                  (iii) sometimes a scalar and sometimes a vector    

(iv) neither a scalar nor a vector 

Self Assessment Question (SAQ) 3:Choose the correct option- 

For a solenoidal vector- 
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(i) curl of that vector = 0     (ii) gradient of that vector = 1     (iii) divergence of that vector = 0 
(iv) divergence of that vector =1 

Self Assessment Question (SAQ) 4:Choose the correct option- 

(i) 1 weber = 108 maxwell                (ii) 1 maxwell = 108 weber      (iii) 1 weber = 10 maxwell   
(iv) none of these   

Self Assessment Question (SAQ) 5:A coil of wire enclosing an area of 200 cm2 is placed at an 
angle of 300 with a magnetic field of 0.10 Wb/meter2. What is the magnetic flux linked with the 
coil? 

Self Assessment Question (SAQ) 6:If the divergence of any vector function in a region is zero, 
what does it mean? 

Self Assessment Question (SAQ) 7:Why is the magnetic field induction B also called the 
magnetic flux density? 

8.7 MAGNETIC FIELD FOR CIRCULAR CURRENTS 

Let us consider a circular loop of radius a, carrying current i (Figure 2). Let P be a point at the 
axis of the loop at a distance x from the centre at which the magnetic field is required. 

 A 

dl 

 r                              dBcosα         dB 

 

     α α 

 αP α dB sinα 

                                                                                                                               dB’ 

 dB’ cosα 

 dl B x 

                   Figure 2 

a 

 

O 
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Let us consider a small current element of length dl at point A (at the top) of the loop, at right 
angles to the plane of the page and directed outward. Let r be the distance of this small element 
from the point P.  

Using Biot-Savart law, the magnetic field due to this element at point P is- 

dB
r

  = 
µ��π

� BR1112×�12
��                                                                 …..(26) 

The direction of dB
r

isperpendicular to the plane containing dl and r and is given by right hand 

screw rule. As the angle between dl
r

and r2 is 900, therefore the magnitude of the magnetic field 
(magnetic induction) is given by- 

                                                              dB = 
0�
�π

�BR���8
�
��  =  

0�
�π

�BR
��                                      …..(27) 

The direction of magnetic field dB  is in the plane of the paper and at right angles to the line r, as 
shown. Let us resolve this magnetic field dB into its components- 

(i) The component of dB along the axis of loop = dB sin α    (horizontal component) 
(ii) The component of dB at right angles to the axis of loop = dB cos α (vertical component) 

Now let us consider another identical current element at point B (at the bottom of the loop) just 
opposite to the previous element of same length dl, which is at right angle to the plane of the 
page but directed inward. The magnetic field dB'  due to this current element at point P will be 
equal in magnitude to dB but directed as shown. It is obvious that the components of dB and dB' 
at right angles to the axis (i.e. vertical components) are equal in magnitude but opposite in 
direction. Hence they cancel to each other. But the horizontal components i.e. the components 
along the axis are in same direction and hence they are added up. Thus the resultant magnetic 
field at point P is due to horizontal components only. 

Let us imagine that the entire loop is divided into such current elements, the resultant magnetic 
field B at point P is directed along the axis and its magnitude is given by- 

                                                   B = ∮ dB sin α 

Putting for dB  in the above, you get- 

                                             B = ∮ 0�
�π

�BR
�� sin α 

                                                = 
µ��π

�
A� ∮ dl sin α                                                               …..(28) 

In right angled triangle AOP, sin α =
ì�
ìÅ= 

�
� = 

�
√��zj� 
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Therefore, from equation (28), you have- 

                                                        B = 
µ��π

�
A� ∮ dl �

√��zj� 

                                                            = 
µ��π

�
A�

�
√��zj� ∮ dl 

But ∮ dl = 2π r ( the circumference of the loop) 

Therefore,                                              B = 
µ��π

�
A�

�
√��zj�×2π a 

                                                                  = 
µ��

�
A�

¤�
√��zj� 

Or                                                     B = 
µ����

�9��zj�;��
                                                              …..(29) 

If there are n turns in the loop, then each turn will contribute equally to B. Therefore, 

                                                           B = 
µ�����

�9��zj�;��
                                                             …..(30) 

The direction of the magnetic field B is along the axis of the loop. 

 At the centre of the loop, x =0, therefore, from equation (31), you have- 

                                                            B = 
µ�����

�9��z
;��
 = 

µ�����
���  = 

µ�����                                        …..(31) 

Again the direction of the magnetic field is perpendicular to the plane of the loop i.e. along the 
axis of the loop. 

If the loop is small, then x≫a, (i.e. a can be neglected in comparison of x)therefore, from 
equation (30), you have- 

                                                           B = 
µ�����

�9��zj�;��
 = 

µ�����
�j�                                                 …..(32) 

8.8 MAGNETIC FIELD FOR SOLENOIDAL CURRENTS 

A solenoid is a long insulated copper wire wound over a tube of card-board or china clay in a 
close-packed cylindrical helix. When electric current is passed through the solenoid, a magnetic 
field is produced around and within the solenoid. 
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Figure 3 shows the lines of force of the magnetic field due to a solenoid. The magnetic lines of 
force inside the solenoid are nearly parallel which indicate that the magnetic field within the 
solenoid is uniform and parallel to the axis of the solenoid. 

 

 

 

 

 

 

 

 

 

       +                      - 

 

                                                                                Figure 3 

Let there be a long solenoid of radius a metre and carrying a current of i ampere. Let the number 
of turns per unit length of the solenoid be n. Let P be a point on the axis of the solenoid (Figure 
4). 

                                                                 dx 

                                                         A            B 

aαC r dα 

O   α       P P’ 

x 

 

                                                                      Figure 4 
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Let us imagine that the solenoid is divided up into a number of narrow coils and let us consider 
one such coil AB of width dx. The number of turns in this coil is n dx. Let x be the distance of 
the point P from the centre O of this coil. The magnetic field at P due to this elementary coil is 
given by- 

                                                              dB = 
µ�9� Bj;���
�9��zj�;��

                                                         …..(33) 

Let r be the distance of the coil AB from P and dα the angle subtended by the coil at P. Then in ∆ 
ABC, we have- 

                                                                    sin α = 
ÄS
ìÄ = 

� Bα

Bj  

 or                                                               dx = 
� Bα��� α

 

 But in right angled triangle APO,    a2 + x2 = r2 

Putting for dx and (a2 + x2) in equation (33), you get- 

dB = 
µ�k� G HI&EJIn���

�9��;��
 = 

µ�� � �� Bα

��� ��� α
 

                                                                         =k��
��n µ�� � BK

� ���L  

But in right angled triangle AOP,  k��
��n = sin2 α, therefore- 

                                                  dB = 
µ�� � BK
� ���L  sin2α = 

�
� µ
ni sin α dα                                …..(34) 

The magnetic field B at point P due to entire solenoid can be obtained by integrating the above 
expression eq. (34) between the limits α1 and α2, where α1 and α2 are the semi-vertical angles 
subtended at point P by the first and the last turn of the solenoid respectively (Figure 5). Thus- 

Total magnetic field B = [ dBα�
α�  = [ �

� µ
ni sin α dαα�
α�  

                                                      = 
�
� µ
ni [  sin α dαα�

α�  = 
�
� µ
ni¦– cos α¨

α�
α�

 

Or                                       B = 
�
� µ
ni°cos α� − cos α�¶                                            …..(35) 

When point P is well inside a very long solenoid, then α1 ≈ 0 and α2 ≈ 1800 so that cos α1 ≈ 1 and 
cos α2 ≈ -1. Therefore, equation ( 35) becomes- 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 165 

 

                                                                B = 
�
� µ
ni°1 − 9−1;¶ = 

�
� µ
ni°2¶ 

Or                                                            B = µ
ni                                                           …..(36) 

 

 

 α2 

     α1 P’ 

 P 

 

                                                                            Figure 5 

 

At the end of the last turn, at P’ , α1 = 0 and α2 = 900 , therefore from equation (35)- 

                                                                B = 
�
� µ
ni                                                        …..(37) 

At the end of the first turn, α1 = 900 and α2 = 1800 , therefore from equation (35), you get- 

B = 
�
� µ
ni                                                        …..(38) 

Thus, the magnetic field at the ends of a long solenoid is half of that at the centre. If the solenoid 
is sufficiently long, the magnetic field within it, except near the ends, is uniform. It does not 
depend upon the length and area of cross-section of the solenoid. As a parallel plate capacitor 
produces uniform electric field similarly, a solenoid produces a uniform magnetic field. The 
uniform magnetic field within a long solenoid is parallel to the solenoid axis. Its direction along 
the axis is given by a curled straight right hand rule.                                                                                                               

8.9 TORQUE ON A CURRENT LOOP IN A UNIFORM 

MAGNETIC FIELD 

Let us consider a rectangular wire loop PQRS, of length l and width b, carrying a current i be 

suspended in a uniform magnetic field B112 as shown in figure 6. Each side of the current loop 
experiences a magnetic force in the magnetic field. 
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The magnitude of the force acting on side PQ, F1 = i B l sin θ  

Since the vertical side of loop PQ is always perpendicular to the magnetic field B112. Therefore, θ = 
900. Thus the force F1 = i B l sin 900  = i B l 

 

 

 

 

  Q F:11112 

  B112 

 i 

                                                                                                R 

F�11112 

 

                                                    i 

 

                                                  P  F�11112 

 

 S 

  

F�11112 

                                                                            Figure 6 

Similarly, the magnitude of magnetic force acting on side RS, F2 = i B l sin θ 

Since the vertical side of loop RS is always perpendicular to the magnetic field B112. Therefore, θ = 
900. Thus the force F2 = i B l sin 900  = i B l 
Thus, the magnitudes of magnetic forces acting on sides PQ and RS of loop are equal i.e. 
                                                                       F1 = F2  = i B l                                                …..(39) 
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By Fleming’s left hand rule, both forces  F�11112  and F�11112  are perpendicular to the page directed away 

from the reader and towards the reader respectively. Obviously, the both forces F�11112  and F�11112 are 
equal, parallel and opposite having different lines of action. These forces form a deflecting 
couple which tends to rotate the loop clockwise. 
 
  

F�11112 
 Normal 
 
 i up 
 Axis of the loop 
   θ b 

           θ 
    
 
 i down 
               b sin θ 

 B112 

 

F�11112 

                                                                          Figure 7 

Let us suppose that at any time, the axis of the loop (normal to the plane of the loop) makes an 

angle θ with the direction of the magnetic field B112 (as shown in figure 7). Then, the instantaneous 
moment of the deflecting couple, (or the torque) acting on the current loop-  

τ = magnitude of the force F1 (or F2) × perpendicular distance between the line of action of the           
forces 

   = i B l × b sin θ = i B ( l× b) sin θ 

 But l × b = Area of the current loop = A (say), therefore- 

                                                               τ = i B A sin θ                                                    …..(40) 

The magnetic force acting on the side QR of the loop, F3 = i B b  

Similarly, the magnetic force exerted on the side PS of the current loop, F4 = i B b  
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These forces F:11112 and F�11112 acting on the sides QR and PS of the current loop are equal and opposite 
to each other but their line of action is the same. Hence, they cancel each other and do not form a 
couple. Thus, the net force on the current loop is zero. Only the torque given by equation (40) 
acts on it. This torque deflects the current loop to a position in which the axis of the current loop 
is parallel to the magnetic field. In this position, θ = 00, therefore the torque becomes zero. This 
torque τ = i B A sin θ acts on every turn of the current loop. Therefore, if the loop is a close 
wound coil having N turns, the torque acting on the entire loop is- 

                                                              τ = N i B A sin θ     

or                                                         τ = N i A B sin θ        …..(41) 

Obviously, the unit of torque is Newton-meter. 

But term N i A is defined as the magnitude of the dipole moment M1112 of the coil. Thus-  

                                                                           M = N i A                                                 …..(42) 

Therefore, equation (41) becomes- 

                                                            τ = M B  sin θ                                                          …..(43) 

In vector form-                                    N 112 = M1112 × B112                                                               …..(44) 

This is the required expression. It is the basis to the theory of a moving coil galvanometer.This 
expression holds for closed loops of any shape, rectangular, circular or otherwise. 

Example 4:Two similar circular coils of wire having a radius of 70 mm and 60 turns have a 
common axis and are 18 cm apart. Find the strength of the magnetic field at a point midway 
between them on their common axis, when a current of  100 mA is passed through them. 

Solution: Given, a = 70 mm = 7 cm = 0.07 meter, n = 60, i = 100 mAmp = 0.10 amp, x = 18cm/2 
= 9 cm = 0.09 meter and µ0 = 4π × 10-7 Wb/Amp-meter 

The magnetic field due to either of the circular coils at a point on the axis distant x from the 
centre is- 

                                                                       B = 
µ�����

�9��zj�;��
 

                                                                           = 
��×�
��×�
×
.�
×9
.
7;�

�9
.
7�z
.
8�;��
 

                                                                           = 2.5 × 10-5 Tesla 
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Example 5: A 30 turns circular coil of diameter 16 cm carries a current of 6 amp. It is suspended 
vertically in a uniform horizontal magnetic field of 1 Tesla such that the magnetic field lines 
make an angle of 300 with the plane of the coil. Estimate the magnitude of the counter torque 
needed to be applied to prevent the coil from turning. 

Solution: Given, N = 30, radius of the coil r = 16 cm/2 = 8 cm = 0.08 meter, i = 6 amp, B = 1 
Tesla, θ = 900 – 300 = 600 

Area of the coil A = π r2 = 3.14 × (0.08)2 = 0.0201 meter2 

Torque τ = N i A B sin θ = 30 × 6 × 0.0201 × 1 × sin 600 = 3.13 Newton-meter 

Therefore, a counter torque of 3.13 Newton-meter should be applied. 

Self Assessment Question (SAQ) 8: A long solenoid of length 100 cm and radius of cross 
section 1.5 cm, has five layers of windings of 750 turns each. If the solenoid carries a current of 
650 Amp, compute the magnetic field at the centre of the solenoid. 

8.10  SUMMARY 

In this unit, you have learned about curl and divergence of magnetic field vector, vector 
potential, magnetic flux and derived the expressions for magnetic field induction for circular and 
solenoidal currents.We have defined the magnetic flux linked with that plane as the dot (scalar) 

product of magnetic field (B112) and the area of the plane (A112). In this unit, you have also studied the 
torque acting on a current loop in a uniform magnetic field and learned how the forces acting on 
two sides of a loop placed in a uniform magnetic field, form a deflecting couple. To make the 
concepts of clear, many solved examples are given in the unit. To check your progress, self 
assessment questions (SAQs) are given place to place. 

8.11  GLOSSARY 

Steady -  stable 

Flow-  stream, current 

Divergence- deviation, departure 

Magnetic flux – the surface integral of the magnetic field over that surface 

Magnetic flux density – a vector which specifies the magnitude and direction of magnetic field at 
a point 

8.12  TERMINAL QUESTIONS 

1. Prove that the curl of 112 is equal toµ0 times current density. 
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2. How will you define the curl of a vector? 

3.  Establish the condition that the magnetic field is solenoidal.. 

4.  Give the significance of divergence. 

5.  Define vector potential. 

6. Give the importance of vector potential. 

7. A rectangular coil of size 0.5 meter×0.10 meter and 100 turns is placed perpendicular to a 
magnetic field of 0.01 Wb/meter2.  Evaluate the change in magnetic flux linked with the coil if it 
is drawn from the magnetic field. 

8. Is magnetic flux a scalar or vector? What about the magnetic flux density? 

9. Define magnetic flux. What is its unit? 

10.If the plane of a coil is parallel to the magnetic field, then what will be the magnetic flux 
linked with the coil? 

11. Why is A112 called vector potential? 

12. Derive an expression for the torque acting on a rectangular coil of area A, carrying a current 
i, placed in a magnetic field. The angle between the direction of magnetic field and normal to the 
plane of coil is θ. 

13. Establish an expression for the magnetic field at a point on the axis of a circular coil carrying 
current, and hence at the centre of the coil. 

14.  Derive the following expression for the magnetic field of a solenoid- 

                                                           B = 
�
� µ
ni°cos α� − cos α�¶ 

Where symbols have their usual meanings. 

8.13 ANSWERS 

Self Assessment Questions (SAQs): 

1. (ii) a scalar 
2. (i) a vector 
3. (iii) divergence of that vector = 0 
4. (i) 1 weber = 108 maxwell 
5. Given,   Area of coil A = 200 cm2 = 200×10-4 meter2 = 2× 10-2 meter2 = 0.02 meter2, 

θ = 900 – 300 = 600, Magnetic field B = 0.10 Wb/meter2 
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The magnetic flux linked with the coil φ = BA cosθ 
= 0.10×0.02× cos 600 = 0.10× 0.02× 0.50 = 1× 10-4 Wb 

6. If the divergence of any vector function in a region is zero, it means that the flux of the 
vector function entering any element of this region is equal to that leaving it. 

7. Since φ = BA or B = φ/A 
Thus the unit of magnetic flux is also expressed in weber/meter2 ( Wb/meter2 ). That is 
why the magnetic field induction B  is also called the magnetic flux density. 

8. Given,  i = 650 amp, length l = 100 cm = 1 meter, n = 5 × 750 = 3750 turns/meter 
 The magnetic field at the centre of the solenoid, B = µ
ni  = 4π×10-7 ×3750×650 

 = 4×3.14×10-7×3750×650 = 3.061 Wb/meter2 

Terminal Questions: 

7. Given, Area of the coil A = 0.5 meter×0.10 meter = 5×10-3 meter2, Magnetic field B = 
0.01 Wb/meter2 
Since the coil is placed perpendicular to a magnetic field, therefore θ = 00 
Initial  magnetic flux linked with the coil φ1 = BA cosθ = BA cos 00 = BA 
                                                                       = 0.01×5×10-3 = 0.00005 Wb 
Since the coil is drawn from the magnetic field, no magnetic flux will be linked with the 
coil. Therefore, final magnetic flux linked with the coil φ2 =0 
Magnetic flux ∆φ = φ2 – φ1 = 0- 0.00005 = - 0.00005 Wb  = - 5×10-5 Wb 

8. Magnetic flux is a scalar. Magnetic flux density is a vector. 

10. If the plane of a coil is parallel to the magnetic field, then no flux-line will pass through it     
and the magnetic flux linked with that plane will be zero. 
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9.1 INTRODUCTION 

Dear learners, in the previous unit, you have learnt about curl and divergence of magnetic field, 
magnetic flux and established the expressions for magnetic field for circular and solenoidal 
currents. You have also calculated the torque on a current loop in a uniform magnetic field. 
According to the modern view, the magnetic properties of a substance are endorsed to the 
electronic motions i.e. orbital motion and spin motion, in the atoms of the substance. Due to 
these motions, each atom is equivalent to a tiny current loop and produces magnetic field. In the 
unmagnetised state of the substance the current loops are oriented at random so that the magnetic 
fields mutually cancel. When the substance is magnetized by some process, all current loops are 
aligned with their planes parallel to one another and currents circulating in the same direction. 
Hence a resultant magnetic field is produced. In the present unit, you will study about current 
loop as a magnetic dipole and torque acting on a bar magnet in a uniform magnetic field. You 
will also study about potential energy of a magnetic dipole in a magnetic field. You will also 
learn about Ballistic galvanometer, its function and characteristics. 

9.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand magnetic dipole 
• understand torque on a bar magnet 
• calculate the torque on a bar magnet and solve problems 
• calculate the potential energy of a magnetic dipole in a magnetic field 
• understand ballistic galvanometer 

9.3 CURRENT LOOP AS A MAGNETIC DIPOLE 

You know that a current carrying solenoid or a coil or a current loop behaves like a bar magnet. 
A bar magnet having north and south poles at its ends is a magnetic dipole and therefore, a 
current loop is also a magnetic dipole. You can calculate the magnetic moment of a current loop. 
In the previous unit, you have learnt that the magnetic field due to a circular current loop of 
radius a and having n turns at a point on its axis, distant x from the centre of the loop, is given 
by- 

                                                            B = 
µ�����

�9��zj�;��
                                                               …..(1) 

The direction of this magnetic field is along the axis of the loop i.e. perpendicular to the plane of 
the loop. 
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For axial points far from the loop, we have x≫a, then the above expression reduces to- 

                                                                   B = 
µ�����

�j�                                                              …..(2) 

Multiplying by π in numerator and denominator in R.H.S., we get- 

                                                                 B = 
µ������

��j�  

                                                                    = 
µ��π

π����
j�  = 

µ��π

ì��
j�        (since πa� = A, area of the loop) 

Or                                                        B = 
µ��π

��ì
j�                                                         …..(3) 

The quantity niA is called magnetic dipole moment M1112 of the current loop. Thus- 

                                                                    M = niA                                                           …..(4) 

The unit of magnetic dipole moment is ampere-meter2. 

In vector form, we can write- 

M1112 = niA112                                                                      …..(5) 

The direction of magnetic dipole moment M1112 is the same as the direction of the area vector A112 of 
the current loop. Thus, equation(3), for the magnetic field due to a current loop at a distant axial 
point can be written as- 

B112  = 
µ��π

O1112
j�                                                                      …..(6) 

Thus, you see that B112  and M1112 have the same direction. 

9.4 TORQUE ON A BAR MAGNET IN A UNIFORM MAGNETIC 

FIELD 

You observe that when a bar magnet is suspended in a uniform magnetic field,it sets itself with 
its axis parallel to the magnetic field. It means that the magnet positioned in the magnetic field 
experiences a torque which rotates the magnet to a position in which the axis of the magnet is 
parallel to the magnetic field. A current loop in a magnetic field shows the same behavior. The 
current loop also experiences a torque which tends to rotate the loop to a position in which the 
axis of the loop is parallel to the magnetic field. The bar magnet and current loop, both are 
magnetic dipoles. 
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According to the modern views regarding magnetism, each atom of the magnet is a small current 
loop and all these current loops are aligned in the same direction. In a magnetic field, the sum of 
the torques on these small loops is the torque acting on the magnet. 

 

 Magnetic axis 

                                                                                                                                          θ                                                        

 

 

 

B112 

 

 

 

 Figure 1 

You have learnt that the magnitude of the torque exerted on a current loop positioned in a 

magnetic field  B112 if its axis makes an angle θ with the direction of B112 is given by- 

                                                                  τ =  i A B sin θ                                                       …..(7) 

Here, A is the area of the current loop. 

If there are N current loops in a bar magnet, then the torque acting on the entire magnet is- 

                                                                 τ = N i A B sin θ                                                    …..(8) 

You have read that the quantity N i A is defined as the magnitude of the magnetic dipole moment M1112 of all the N current loops or of the bar magnet i.e.  

                                                                       M =Ni A                                                          …..(9) 

Therefore, equation (8) takes the form as- 

                                                                       τ = M B sin θ                                                …..(10) 

Here θ is the angle between the vectors M1112 and B112. In vector, the above expression (10) can be 
written as- 
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τ2 = M1112 × B112                                                      …..(11) 

The magnetic moment M1112 is directed along the axis of the bar magnet. 

We can compare this torque with the torque exerted by an electric field (E112) on an electric dipole 
which is given  as- 

τ2 = p12 × E112                                                         …..(12) 

Here p12 is the electric dipole moment. 

There is a difference between these two torques. The torque on a magnetic dipole situated in a 
magnetic field is an independent physical quantity. One cannot suppose that it is made up of two 
parallel, equal and opposite forces acting on the magnetic poles. But on the other hand, the 
torque on an electric dipole is made of two parallel, equal and opposite forces acting on the 
electric charges of the dipole. 

If the axis of the magnetic dipole be perpendicular to the magnetic fieldB112, then the torque exerted 
on it will be maximum. Thus, 

                                                         τmax = M B sin 900 

                                                                = M B                                                                   …..(13) 

Or                                                    M = τmax/ B 

If B = 1 (unit), then M = τmax 

Thus, the magnetic moment of a magnetic dipole is equal to the torque acting on the dipole if it is 
placed perpendicular to a uniform unit magnetic field. 

The SI unit of magnetic dipole moment is Joule/Tesla or ampere-meter2.  

9.5 POTENTIAL ENERGY STORED OF A MAGNETIC DIPOLE 

You have read that if a magnetic dipole (bar magnet, current loop etc.) is placed in an external 
uniform magnetic field, then it is acted upon by a torque which tends to align the magnetic dipole 
in the direction of the magnetic field. Therefore, work must be done to change the orientation of 
the magnetic dipole against the torque. It means that the magnetic dipole has magnetic potential 
energy depending on its orientation in the magnetic field. Let us evaluate this energy. 

Let us consider a magnetic dipole of magnetic dipole moment M1112placed at an angle θ with the 

direction of a uniform magnetic fieldB112 . Then, the magnitude of the torque exerted on the 
magnetic dipole is given as- 
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                                                               τ = M B sin θ                                                         …..(14) 

Now, let the magnetic dipole is rotated through an infinitesimally small angle dθ against the 
torque, then the amount of work done for this act- 

                                                                dW = τ dθ                                                        …..(15) 

Putting for τ from equation (14) into equation (15), we get- 

                                                               dW = (M B sin θ) dθ                                           …..(16) 

If the magnetic dipole is rotated from an initial orientation θ1 to a final orientation θ2, then the 
total work needed will be- 

                                                              W = [ dWθ�
θ�  

                    = [ 9M B sin θ;dθθ�
θ�  

                               = MB [ 9sin θ;dθθ�
θ�  = MB ¦– cos θ¨

θ�
θ�

 

                                                                   = - MB 9cosθ� − cosθ�; 

Or                                                         W = MB 9cosθ� − cosθ�;                                    …..(17) 

This work is stored in the form of potential energy U of the dipole in the new orientation θ2. 
Therefore, 

                                                                 U = MB 9cosθ� − cosθ�;                                  …..(18) 

Now let us assume the potential energy of the magnetic dipole to be zero for its any arbitrary 
orientation. Let us suppose potential energy U is equal to zero when the axis of the dipole makes 
an angle θ = 900 with the direction of magnetic field. Thus, taking θ1 = 900 and θ2 = θ, then the 
expression (18) becomes- 

                                                               Uθ = MB 9cos90
 − cosθ; 

                                                                     = MB 90 − cosθ; 

Or                                                           Uθ = - MB cosθ                                                   …..(19) 

In vector notation,                                  U = - M1112 . B112…..(20 a) 

If θ = 00, then the potential energy of dipole Uθ = - MB cos00 

Or U0= -M B 
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This is the minimum potential energy that a magnetic dipole can have. Thus, you see that a 

magnetic dipole has minimum potential energy when M1112 and B112 are parallel. 

When θ = 1800, then the potential energy of dipole U180 = - MB cos1800 

                                   = M B 

This is the maximum potential energy that a magnetic dipole can have. In this way, you see that a 

magnetic dipole has maximum potential energy when M1112 and B112 are antiparallel. 

The difference in energy between these two orientations is given as- 

                                                         ∆ U = U180 - U0 

                                                                = M B – (- MB) 

                                                               = 2 MB 

This much work must be done by an external agent to turn a magnetic dipole through 1800, 
starting when it is lined up with the magnetic field. 

Example 1: A current of 6 Amp is flowing in a plane circular coil of radius 2 cm having 200 
turns. The coil is placed in a uniform magnetic field of 0.2 Wb/meter2. If the coil is free to rotate, 
what orientations would correspond to its (a) stable equilibrium, (b) unstable equilibrium? 
Calculate the potential energy of the coil in these two cases. 

Solution: Given, i = 6 Amp, r = 2 cm = 0.02 meter, N = 200, B = 0.2 Wb/meter2 

The area of coil A = π r2 = 3.14 × (0.02)2 = 0.001256 = 1.256 × 10-3 meter2 

The magnetic moment of the coil, M =N i A 

                                                            = 200 × 6 × 1.256 × 10-3 

                                                             = 1507.2 × 10-3 = 1.5072 Amp-meter2 

The potential energy of the coil when placed in a uniform magnetic field is given by- 

Uθ = - MB cosθ    

(a) In the case of stable equilibrium, the coil will orient itself so as to have a minimum (i.e. 
maximum negative) potential energy and this corresponds to θ = 00 i.e. the axis of the coil will be 

parallel to the magnetic field i.e. M1112  parallel to B112 . In this case, the potential energy will be- 

U0 = - MB cos00 
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= - M B  

                                                                    = - 1.5072 × 0.2 = - 0.30144 Joule  

(b) In the case of unstable equilibrium, the coil will have maximum potential energy. This will be 

so when θ = 1800 i.e. M1112   anti- parallel to B112. The potential energy will be- 

                                                              U180 = - MB cos1800 = M B 

                                                                      = 0.30144 Joule 

Example 2:A short bar magnetof magnetic moment 0.50 Joule/Tesla is held with its axis at 300 
with a uniform external magnetic field of 0.15 Tesla. Find the magnitude of the torque exerted on 
the magnet by the magnetic field. 

Solution: Given, M = 0.50 Joule/Tesla, θ = 300, B = 0.15 Tesla 

The torque exerted on the bar magnet- 

                                                            τ =  M B sin θ 

                                                                = 0.50 × 0.15 × sin 300 

                                                               = 0.50 × 0.15 × 0.50 = 0.0375 Joule 

Self Assessment Question (SAQ) 1:When is the magnetic dipole in stable and unstable 
equilibrium? 

Self Assessment Question (SAQ) 2:A bar magnetof magnetic moment 1.5 Joule/Tesla is set 
aligned with the direction of a uniform magnetic field of 0.22 Tesla. 

(a) Compute the work required to turn the magnet so as to align its magnetic moment (i) 
normal to the magnetic field and (ii) opposite to the magnetic field direction. 

(b) Also find the torques on the bar magnet in the two cases. 

Self Assessment Question (SAQ) 3:A couple of moment 1.5 × 10-5 Newton-meter is needed to 
keep a magnetic dipole perpendicular to a magnetic field of 6 × 10-4 Wb/meter2. Evaluate the 
magnetic moment of the dipole. 

Self Assessment Question (SAQ) 4:Choose the correct option- 

The SI unit of magnetic dipole moment is- 

(a) Amp-meter2      (b) Amp/meter            (c) Tesla meter/Amp           (d) none of these 
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9.6 BALLISTIC GALVANOMETER 

It is also known as moving coil ballistic galvanometer. Moving coil ballistic galvanometer is a 
specially designed galvanometer for the measurement of the total quantity of charge passed 
through it for a short duration. The ordinary galvanometer measures current. 

A moving coil ballistic galvanometer consists of a coil of large moment of inertia and large 
number of turns of insulated fine copper wire wound on a non-conducting frame such as bamboo 
or ivory. The coil is suspended by means of a thin phosphor bronze strip between the cylindrical 
pole pieces of a permanent magnet. The lower end of it is attached to a spring of phosphor-
bronze wire. A concave mirror is rigidly attached to the phosphor-bronze strip to record the 
deflection of the coil by a lamp and scale arrangement. A soft iron core is kept symmetrically 
within the coil without touching it. The whole arrangement is enclosed in a metallic case 
provided with a glass window on the front side and leveling screws at the base. 
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 S                               R 

 b 

 

                                                                     Figure 2 
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Since the suspension is thin, long and in the form of a strip, therefore the torsional constant C is 
small. You know that the period of oscillation of a moving coil ballistic galvanometer is given 
by- 

T = 2π� R
S                                                                             …..(20 b) 

Since the coil has a large moment of inertia I and its suspension has small torsional constant C, 
therefore, its period of oscillation [as given by equation (20)] is quite large.  Further, as the coil 
is wound on a non-conducting frame, its electromagnetic damping is reduced. The damping due 
to viscosity of air is still present, but it is usually small. Now let us discuss the theory of a 
moving coil ballistic galvanometer. 

Theory 

Let i be the electric current flowing in the coil at any moment as shown in figure 2. Let N be the 
number of turns in the coil, l the length of its each vertical side, b its breadth and B the strength 
of the radial magnetic field in which the coil is suspended. 

The magnitude of the mechanical force acting on each of the two vertical sides PS and QR at that 
moment = N i B l sin 900 = N i  B l 

The force acting on the sides PQ and SR = N i B l sin 00 0 

i.e. the force acting on the sides PQ and SR will be zero because these sides are parallel to the 
magnetic field. 

According to Fleming’s left hand rule, the forces acting on the vertical sides PS and QR are 
opposite and perpendicular to the plane of the coil. The magnitudes of these forces are equal. 
These equal and opposite forces form a couple.  

The moment of this couple = magnitude of force × perpendicular distance between the line of                 
action of the forces 

                                              = (NiBl)× b = N i B (l × b) 

                                              = N i B A                                 

(since l × b = A, the area of the coil) 

Let us consider that this couple acts on the coil for an infinitesimal time dt, then the angular 
impulse given to the coil = couple × time = N i B A × dt 

Therefore, the total angular impulse given to the coil in time t = [ 9N i B A; dtî
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                                                                = N B A [ i dtî

  = N B A q                                  …..(21) 

Since [ i dtî

  = q, the total charge that has passed through the moving coil galvanometer in time t. 

This impulse produces an angular momentum in the coil due to which the coil rotates. 

Let ω0 is the initial angular velocity of the coil and I, the moment of inertia of the coil about the 
axis of rotation.  

The angular momentum produced in the coil due to the angular impulse = I ω0               …..(22) 

From equations (21) and (22), we have- 

                                                                           N B A q = I ω0                                         …..(23) 

When the coil rotates due to the angular momentum and therefore, the suspension wire twists due 
to which a restoring couple is developed in the suspension. The restoring couple of suspension 
brings the coil to the position of rest momentarily. Then the coil swings back to its mean position 
as the suspension unwinds and due to its inertia, the coil does not come to the rest in its mean 
position but moves in opposite direction. Therefore, the suspension wire twists in opposite 
direction and again a restoring couple is developed in the coil which tends to bring the coil to its 
mean position. The process continues and thus the coil oscillates in the horizontal plane about the 
axis of suspension. 

Evidently, the kinetic energy of the coil at start is 
�
� Iω
�. At the moment when the coil comes to 

the position of rest momentarily, the angle of rotation θm is maximum and the kinetic energy of 
the coil is zero. If the damping is negligible then the energy is entirely used for doing work in 
twisting the suspension against the restoring couple. 

Let C be the restoring couple per unit twist in the suspension, then the couple for a twist θ =  C θ 

Therefore, the work done for an additional small twist = (C θ) dθ 

The work done against the restoring couple = [ 9C θ; dθ
θº
  

                                                                       = C [ θ dθ = θº

�
�CθT�  

Therefore,                               
�
� Iω
� = 

�
�CθT�  

Or                                                                 ω0 = θm�SR .....(24) 

Now, putting for ω0 from equation (23) in equation (24), we get- 
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                                                   N B A q / I =  θm�SR  

Or                                               q =  
SUÄì � R

S θT                                                               …..(25) 

The time period of the moving system- 

T = 2π� R
S 

Or                                                  � R
S = 

V
�π

                                                                       …..(26) 

Putting for � R
S from equation (26) in equation (25), we get- 

                                                          q =  
SUÄì

V
�π

 θm                                                         …..(27) 

This is the relation between the charge q flowing through the ballistic galvanometer and the 
maximum throw θm of the coil. 

The equation (27) can be written as- 

                                                          q =  K θm                                                                …..(28) 

where                                              K = 
SUÄì

V
�π

                                                                …..(29) 

Here K is known as ballistic constant of the moving coil galvanometer. 

Obviously,                                             q α θ0                                                                  …..(30) 

Thus, when momentary current is passed through the ballistic galvanometer, the total charge 
passed through the galvanometer is proportional to the maximum angular deflection θm of the 
coil. 

The quantity 
θº
	  is called charge sensitivity Qs  i.e. the charge sensitivity of the ballistic 

galvanometer is defined as the deflection per unit charge i.e. 

                                              Charge sensitivity = 
B
"R
�î�P��W��ü
  

Thus,                                                   Qs =
θº
	   = 

UÄì
S

��V                                                    …..(31) 
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The current sensitivity of a moving coil ballistic galvanometer is defined as the deflection, as 
read from the scale per unit current i.e. 

                                          Current sensitivity = 
B
"R
�î�P��Q��
�î  

Thus, Current sensitivity I s = 
�
�  = 

UÄì
S                                                       …..(32) 

Obviously,             charge sensitivity = 
�πV × current sensitivity 

Hence, the charge sensitivity of a moving coil ballistic galvanometer is 
�πV   times the current 

sensitivity. 

Voltage sensitivity under any given conditions is the deflection per unit voltage and is 
consequently, current sensitivity divided by the resistance i.e. 

                                        Voltage sensitivity = 
�Q��
�î �
���î�8�î{

�
���î���
  

The resistance is that of entire circuit and not that of the instrument alone. 

Figure of merit of ballistic galvanometer is the current which will produce a deflection of one 
scale division, when we use lamp and scale arrangement, it is the current which will produce a 
deflection of 1 mm on a metre scale one metre away from the galvanometer mirror. 

For equilibrium,                 deflecting couple = restoring couple 

SUÄì  N i  A B = C θ 

9.6.1 Correction for Damping 

While deriving the above relations, we have assumed that the damping in the coil is zero and the 
entire energy of the coil is used for twisting the suspension through an angle θm. But in fact, the 
deflection of the coil goes on decreasing due to the damping produced by viscosity of the air and 
the electromagnetic damping produced by the motion of the coil in the magnetic field of the 
permanent magnet (Figure 3). Therefore, when charge is passed through the ballistic 
galvanometer, you observe that the throw of the coil is smaller than its true value θm which 
would have been observed if the damping were entirely absent. Thus, a correction is necessary. 

Let θ1, θ2, θ3, θ4 ………… etc. be the first, second, third, fourth, …… etc. successive throws in 
continuously decreasing order on either sides of the rest position of the coil θ1, θ3, …… are on 
one side of the rest position of the coil and θ2, θ4, ………are on the other side of the rest position 
of the coil. It is found that the ratio of any two successive throws is constant i.e. 
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θ�
θ� = 

θ�
θ� = 

θ�
θq = …….. = d = eλ                                               …..(33) 

 

Here d is a constant and its logarithm to the base e i.e. loge d is called the logarithmic decrement 
per half cycle and is represented by λ i.e. 

 

                          θm 

                          θ1 

 

             θ                                                         θ3 

 

                         O T                                 2T 

 

 

                                          θ4 

 θ2 

 t 

 

 

                                                                                       Figure 3 

 

                                                                loge d = λ  

or                                                                  d = eλ 

The decrement in a complete cycle is given as- 

θ�
θ� = 

θ�
θ�

θ�
θ�  = e2λ 
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Obviously, the logarithmic decrement in a quarter cycle will be λ/2. To calculate the true value 
of the throw θm in the presence of damping, throw θ, is observed after the coil completes a 
quarter of a vibration. Therefore, the decrement is given by- 

θº
θ�  = eλ/2 

Or                                           θm = θ1e
λ/2 = θ1 [1 + 

�
� + 

kX�n�

�!  + 
kX�n�

:!  + ………..] 

As λ is small, the terms containing λ2, λ3 etc. may be neglected,therefore- 

                                                         θm= θ1 (1 + λ/2)                                                     …..(34) 

Putting for θ0 in equation (27), we get- 

q =  
SUÄì

V
�π

θ1 (1 + λ/2)                                         …..(35) 

This is the relation between the charge passed through the galvanometer and the first throw 
observed. 

In actual practice, the value of λ is found by observing first throw θ1 and eleventh throw θ11. 

θ�
θ�� = 

θ�
θ�

θ�
θ�

θ�
θq

θq
θX

θX
θw

θw
θ�

θ�
θZ

θZ
θ�

θ�
θ��

θ��
θ��  = e10λ 

Or                                                        10 λ = loge
θ�
θ�� 

Or                                                        λ = 
�

�
 log
 θ�
θ�� 

                            = 
�.:
��

�
 log�
 θ�
θ��                     …..(36) 

 

9.6.2 Conditions for a Moving Coil Galvanometer to be Ballistic 

A moving coil galvanometer is said to be ballistic if its coil makes a large number of oscillations 
before coming to rest, after the entire charge passes through it. The conditions for a moving coil 
galvanometer to be ballistic are as follows- 

(i) The period of oscillation should be large. This is possible if moment of inertia (I) of 
the coil is large and torsional rigidity (C) of suspension is small. 

(ii) The damping is kept least. This can be achieved by winding the coil on a non-
conducting frame. 
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9.6.3 Conditions for a Moving Coil Galvanometer to be Dead Beat 

A moving coil galvanometer is said to be dead beat if its coil returns to its rest position quickly 
without making any oscillation, after being deflected. The conditions for a moving coil 
galvanometer to be dead beat are given below- 

(i) The period of oscillation should be small. This is possible if moment of inertia (I) of 
the coil is small and torsional rigidity (C) of suspension is large. 

(ii) The damping is kept large. This can be achieved by winding the coil on a conducting 
frame and a soft iron core is kept between the pole pieces of permanent magnet. 

9.7 SUMMARY 

In this unit, you have learnt about torque acting on a bar magnet in a uniform magnetic field, 
magnetic dipole and potential energy stored of a magnetic dipole.You have learnt that acurrent 
carrying solenoid or a coil or a current loop behaves like a bar magnet. A bar magnet having 
north and south poles at its ends is a magnetic dipole and therefore, a current loop is also a 
magnetic dipole. Expressions for torque acting on a bar magnet, energy stored in a magnetic field 
and ballistic constant have been established. You have studied about correction for damping and 
the reason for this correction. You have also studied the conditions for a moving coil 
galvanometer to be ballistic and dead beat.You have also learnt about current sensitivity, charge 
sensitivity and voltage sensitivity of ballistic galvanometer.To present the clear understanding 
and to make the concepts of the unit clear, many solved examples are given in the unit. To check 
your progress, self assessment questions (SAQs) are given place to place. 

9.8 GLOSSARY  

Magnetized – pulled towards you, caught the attention of 

Aligned- brought into line 

Electromagnetic damping- Damping due to induced currents in the moving system during its 
motion in the permanent magnetic field 

Angular impulse- the time integral of the torque applied to a system, usually when applied for a 
short time 

9.9 TERMINAL QUESTIONS 

1. Explain magnetic dipole moment of a bar magnet. 

2. Obtain an expression for the torque acting on a magnetic dipole (bar magnet) placed in a    
uniform magnetic field. Give its unit. 
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3. What is the difference between the torque acting on a magnetic dipole and an electric dipole? 

4. Prove that the potential energy of a magnetic dipole in a uniform magnetic field is given by- 

U = - M1112 . B112 

    where symbols have their usual meanings. 

5. Give an example of magnetic dipole. 

6. Why is a current loop considered a magnetic dipole? 

7. In hydrogen atom, the electron revolves round the nucleus 6.1 × 1012 times per second in an 
orbit of radius 0.53 A0. Estimate its equivalent magnetic moment. 

8. A bar magnet of magnetic moment 0.8 Joule/Tesla placed with its axis at 450 with a uniform 
external magnetic field experiences a torque of magnitude 0.062 Joule. Find the strength of 
the magnetic field. 

9.  Describe the theory of a moving coil galvanometer. Establish the expression for ballistic 
constant of the galvanometer. 

10. Why is a correction for damping of a moving coil galvanometer. 

11. What are the conditions that a moving coil galvanometer is ballistic? 

12. Prove that the total charge passed through the galvanometer is directly proportional to the 
maximum angular deflection of the coil, on passing the momentary current through the 
ballistic galvanometer 

13. Explain- 

      (i) Current sensitivity of a ballistic galvanometer 

     (ii) Charge sensitivity of a ballistic galvanometer 

    (iii) Voltage sensitivity of ballistic galvanometer 

9.10 ANSWERS 

Self Assessment Questions (SAQs): 

1. A magnetic dipole is in stable equilibrium when M1112 is parallel to 112 and in unstable equilibrium 
when anti-parallel. 

2. Given, M = 1.5 Joule/Tesla, B = 0.22 Tesla  
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(a) The potential energy of a magnet of magnet moment M1112 placed in a magnetic field B112 is given 
by- 

                                                             Uθ = - MB cosθ      

The potential energies when θ = 00, θ = 900 and θ = 1800 are respectively- 

                                                               U0 = - MB cos00 = - MB    

                                                               U90
0 = - MB cos900 = 0           

and                                                         U180
0 = - MB cos1800 = -MB (-1) = + M B  

Therefore, the work required in case (i) is- 

                                                              W =   U90
0 - U0 = 0 – (-M B)  

                                                                   = + MB 

                                                                   = 1.5 × 0.22 

                                                                   = 0.33 Joule 

In case (ii), the work required is- 

                                                            W = U180
0 -   U0 

                                                                =   M B -  (-M B) 

                                                               = 2 M B = 2 × 1.5 × 0.22 = 0.66 Joule  

(b) The torque in case (i) is- 

                                                          τ = M B sin θ     

                                                            =    1.5 × 0.22 ×sin 900 

                                                            = 0.33 Newton-meter 

And that in case (ii) is- 

τ = M B sin θ     

                                                           = 1.5 × 0.22 × sin 1800 = 0 

3.  Given, τ = 1.5 × 10-5 Newton-meter, B = 6 × 10-4 Wb/meter2, θ = 900 

We know that- 
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                                                    τ = M B sin θ     

or                                               M = 
τ

Ä ��� θ
 = 

�.�×�
�X
�×�
�q×��� 8
� 

                                                       = 0.25× 10-1 = 0.025 Amp-meter2 

4. (a) Amp-meter2 

Terminal Questions: 

5. A bar magnet having north and south poles 

6. A bar magnet (which is a magnetic dipole) suspended in a uniform magnetic field experiences 
a torque and therefore, it sets with its axis parallel to the magnetic field. A current loop also 
experiences a torque in a magnetic field due to which it sets with its axis parallel to the 
magnetic field. 

7. Given radius of the orbit = 0.53 A0 = 0.53 × 10-10 meter, No. of revolutions per second = 6.1 × 
1012 

The electron revolving in an orbit is equivalent to a current loop. The magnitude of the current 
is- 

                         i = charge passing per second through any point in the orbit 

                           = charge on electron × number of revolutions per second 

                          = (1.6 × 10-19 coulomb) × (6.1 × 1012 /sec) 

                          = 9.76 × 10-7 Amp 

The magnetic moment of the equivalent current loop is- 

                                           M = N i A 

Here N is the number of turns and A is the area of the loop. Here N = 1, i = 9.76 × 10-7 Amp, A = 
area of the loop = π r2 = 3.14 × (0.53 × 10-10)2 = 0.882 × 10-20 meter2 

Therefore, M = 1 × 9.76 × 10-7 × 0.882 × 10-20 = 8.608 × 10-27 Amp-meter2 

8. Given, M = 0.8 Joule/Tesla, θ = 450, τ = 0.062 Joule  

We know that- 

                                                          τ = M B sinθ 

or                                                  B = 
τO��� θ

 = 

.
��


.y×������   = 1.095 Tesla 
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10.1 INTRODUCTION 

In the previous unit,you have learnt about torque acting on a bar magnet in a uniform magnetic 
field, magnetic dipole, energy stored for a dipole in a magnetic field and ballistic 
galvanometer.The magnetic properties of a substance are explained in terms of tiny current loops 
within the substance. These current loops occur due to motion of electrons within atom. You 
know that an atom consists of positively charged nucleus, surrounded by a cloud of electrons. 
These electrons circulate about the nucleus in definite orbits and also spin about their own axes. 
These moving electrons are equivalent to tiny current loops and produce magnetic fields. In an 
unmagnetised material, the current loops are oriented randomly; therefore, the magnetic fields 
produced by them are cancelled. The magnetization process consists of aligning these loops such 
that the magnetic moment produced by them is parallel to the magnetizing field and hence a 
resultant magnetic field is created. Whenever any material is placed in a magnetic field, the 
elementary current loops tend to get aligned parallel or antiparallel to field direction and the 
material is said to be magnetized. The magnetic field at any point is the resultant of the original 
magnetic field and the field set up due to alignment of current loops. In the present unit, you will 
learn about flux density in a magnetic material and some important terms used in magnetism 
such as magnetic induction, intensity of magnetization, magnetic intensity etc. You will also 
study the classification of magnetic materials on the basis of relative magnetic permeability. 

10.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand magnetic induction 
• understand Intensity of magnetization 
• calculate the magnetic intensity 

10.3 MAGNETIC INDUCTION 

You know that when a piece of any substance is placed in an external magnetic field, the 
substance becomes magnetized. The magnetism produced in this way in the substance is called 
induced magnetism and this phenomenon is called magnetic induction. 

Let us consider an iron bar placed in a uniform magnetic field with its length parallel to the 
magnetic lines of force as shown in figure (1). The bar is magnetized by induction, with a south 
pole induced on the left end where lines of force enter the bar and a north pole induced on the 
right end where lines of force leave the bar. The magnetized bar produces its own magnetic field. 
Its lines of force are in the same direction as those of the original magnetic field inside the bar 
but in opposite direction outside the bar. This results in a concentration of the lines of force 
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within the bar as shown in figure (2). The magnetic flux density within the bar is increased 
whereas it becomes quite weak at certain places outside the bar. 

The magnetic lines of force inside the magnetized bar are called magnetic lines of induction. 

 

 

 

 

 S N 

 

 

 

 

 Figure 1 

The number of magnetic lines of induction inside a magnetized substance crossing unit area 
normal to their direction is called the magnitude of magnetic induction or magnetic flux density 
inside the substance. It is represented by B. Magnetic induction is a vector quantity whose 
direction at any point is the direction of magnetic line of induction at that point.  
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        Figure 2 
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In vector form, it is written as B112. The SI unit of magnetic induction is Tesla (T) or Weber/meter2 
(Wb/m2) or Newton/ (amp-meter). Gauss is the CGS unit of magnetic induction. 

10.4 INTENSITY OF MAGNETIZATION 

The intensity of magnetization of a magnetized substance represents the extent to which the 
substance is magnetized. It is also known as simply magnetization. 

It is defined as the magnetic moment(µM) per unit volume of the magnetized substance. It is 
denoted by M. Therefore, 

           M= 
0[
�    …..(1) 

It is also vector. In vector form, intensity of magnetization is written as M1112 .The SI unit of 
intensity of magnetization is ampere/meter.  

In case of bar magnet, if m be the pole-strength of the magnet, 2l its magnetic length and A its 
area of cross-section, then- 

                               M = 
0[
�  = 

T×�L
ì×�L  

                                                                            = 
T
ì                                                               …..(2) 

Thus, magnetization may also be defined as pole strength per unit area of cross-section. 

10.5 MAGNETIC INTENSITY 

Magnetic intensity is also known as magnetic field strength. When a substance is placed in an 
external magnetic field, it becomes magnetized. The actual magnetic field inside the substance is 
the sum of the external magnetic field and the field due to its magnetization. The ability of the 

magnetizing field to magnetize the substance is expressed by means of a vector H112, called the 
magnetic intensity of the field. 

The magnetic intensity is defined through the vector relation- 

H112 = 
Ä112
µ�

 - M1112                                                             …..(3) 

where B112  is the magnetic field induction inside the substance and M1112  is the intensity of 
magnetization. µ0 is the permeability of free space. 

The SI unit of H112 is same as of M1112 which is ampere/meter. Oersted is the CGS unit of magnetic 
intensity. 
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10.6 MAGNETIC PERMEABILITY 

It is denoted by µ. The magnetic permeability of a substance is a measure of its conduction of 
magnetic lines of force through it.  

The magnetic permeability is defined as the ratio of the magnetic induction B112  inside the 

magnetized substance to the magnetic intensity H112 of the magnetizing field, i.e. 

                                                                    µ = 
Ä112\112                                                                  …..(4) 

Numerically, it is written as-                      µ = 
Ä\                                                                  …..(5) 

Its SI unit is Weber/ (ampere-meter) or Newton/ampere2. 

10.7 RELATIVE MAGNETIC PERMEABILITY 

The relative magnetic permeability of a substance is the ratio of the magnetic permeability µ of 
the substance to the permeability of free space µ0, i.e. 

                                                              µr = 
µ

µ�
                                                                    …..(6) 

It is a dimensionless quantity. It is equal to 1 for vacuum. 

The relative permeability of a substance is also defined as the ratio of the magnetic flux density 
B in the substance when placed in a magnetic field and the flux density B0 in vacuum in the same 
field i.e. 

                                                              µr = 
Ä

Ä�                                                                    …..(7) 

Now we can classify the substances in terms of µr as- 

                                          µr< 1                diamagnetic 

                                          µr> 1               paramagnetic 

                                          µr>> 1             ferromagnetic 

 

10.8 RELATION BETWEEN B, H AND M 

Let us consider the material in the form of a Rowland ring having a toroidal winding of N turns 
around it. When a current i is passed through the winding, the material ring is magnetized along 
its circumferential length. The current i is the real current which magnetizes the ring. 
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Figure (3) shows the section of the magnetized ring. The small circles represent the current 
loops. Now except at the periphery i.e. outer circle, every portion of each loop is adjacent to 
another loop in which the current at the point of contact is in opposite direction. Hence net 
current inside is zero. 
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The current in the outer loop remains uncancelled. Thus the whole network of electronic currents 
within the material can be replaced by a current is circulating around the surface of the ring. This 
current is called Amperian surface current. 

Let A be the cross-sectional area and l the circumferential length of the ring. 

The volume of the ring = A l 

This ring behaves as a large dipole of magnetic moment is A. 

Therefore, the magnetization = 
O�ü�
î�� TPT
�î

�PRQT
  = 
�&ì
ìR  

                                                                            = 
�]
L    = M                                          …..(8) 

Thus, the magnetization equals the Amperian surface current per unit length. This is also known 
as magnetizing current. 

Now, the magnetic flux density B within the material of the ring arises due to free current i and 
due to Amperian surface current is. 

Therefore,                                           B = µ0 (
� �

L +  �]
L ;                                                          …..(9) 

Putting  
�&
R    = M   from equation (8) in equation (9), we get- 

                                                              B = µ0 (
��
L +  M; 

Or                                                            
Ä
µ�

−  M = 
� �

L                                                           …..(10) 

The quantity (
Ä
µ�

−  M) is of significance in magnetism and is known as magnetic intensity or 

magnetic field intensity (H). 

Therefore,                                        H = 
Ä
µ�

−  M 

Or                                                    B = µ0 (H + M)                                                             …..(11) 

Since B, M and H are vectors, therefore, in vector forms- 

B112 = µ0>H112 +M1112@                                                            …..(12) 

and                                                   H112 = 
U �

L  = n i 

where n is the number of turns per unit length. 
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In this way, the value of H depends only on the free current I and is independent of the material. 

If the Rowland ring is empty, then M1112 = 0. The flux density in vacuum is – 

B
11112 = µ0H112                                                                 …..(13) 

The equation (12) is the relation between three magnetic vectors B112 , H112 and M1112. 

Example 1:The horizontal component of the flux density of the earth’s magnetic field is 1.7 × 
10-5 Wb/meter2. What is the horizontal component of the magnetic intensity? 

Solution: Given B0 = 1.7 × 10-5 Wb/meter2, µ0 = 1.26 × 10-6 H/m 

We know that- 

                                                             B = µ0 H 

Or                                                        H = 
Ä
µ�

 = 
�.7 ×�
�X
�.��×�
�w = 13.5 Ampere/meter 

Example 2: A bar magnet has a coercivity of 4 × 103 Amp/meter. It is desired to demagnetise it 
by inserting it inside a solenoid 12 cm long and having 60 turns. What current should be sent 
through the solenoid? 

Solution: The bar magnet requires a magnetic intensity H = 4 × 103 Amp/meter to become 
demagnetised.  

                                n = number of turns per unit length = 60/ (12×10-2) = 500 

Let i be the current carried by the solenoid to produce the magnetic intensity, then- 

                                                 H = n i = (N/l) i  

Or                                              i = H / n = 4 × 103/500 = 8 Amp 

Self Assessment Question (SAQ) 1:A current of 2 Amp is passed through a winding of 20 turns 
per cm. If the magnetic induction is 1.2 Wb/meter2, calculate the intensity of magnetic field and 
the intensity of magnetization. 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The unit of intensity of magnetization is- 

(a) Amp/meter2        (b) weber/meter2        (c) Amp/meter        (d) Amp× meter 

Self Assessment Question (SAQ) 3:Choose the correct option- 

The relationship between three magnetic vectors is- 
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(a) B = µ0 (H + M)    (b)  H = 
Ä
µ�

+  M          (c) H = 
Ä
µ�

×  M      (d) none of these 

Self Assessment Question (SAQ) 4:Choose the correct option- 

The magnetic permeability of a substance is a measure of - 

(a) its conduction of magnetic lines of force through it  

(b) its conduction of electric lines of force through it       

 (c) its conduction of electricity through it  

 (d) none of these 

Self Assessment Question (SAQ) 5:Choose the correct option- 

The magnetic permeability of vacuum, in SI units, is- 

(a) 1                         (b) infinite                        (c)  zero                   (d) 4π×10-7 

Self Assessment Question (SAQ) 6:Choose the correct option- 

Magnetism in substances is caused by- 

(a) orbital motion of electrons only           (b) spin motion of electrons only 

(c) due to spin and orbital motion of electrons both    (d) none of these 

10.9 SUMMARY 

In this unit, you have learnt about magnetic induction, intensity of magnetization, magnetic 
intensity, magnetic permeability and relative magnetic permeability. The intensity of 
magnetization of a magnetized substance represents the extent to which the substance is 
magnetized. It is also known as simply magnetization. It is defined as the magnetic moment(µM) 
per unit volume of the magnetized substance. You have also defined the magnetic intensity 
which is also known as magnetic field strength. When a substance is placed in an external 
magnetic field, it becomes magnetized. The magnetic permeability is defined as the ratio of the 

magnetic induction B112  inside the magnetized substance to the magnetic intensity H112  of the 
magnetizing field. You have also classified the magnetic materials on the basis of relative 
magnetic permeability. In the present unit, you have established the relation between three 

magnetic vectors as B112 = µ0>H112 +M1112@. To present the clear understanding of the unit, solved 

examples are given in the unit. To check your progress, self assessment questions (SAQs) are 
given in the unit. 
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10.10 GLOSSARY  

Magnetic- attractive, compelling 

Magnetic field-the region surrounding a magnet in which the force of the magnet can be detected 

Induction- brining on, stimulation, initiation 

10.11 TERMINAL QUESTIONS 

1. Define magnetic induction and intensity of magnetization. 

2. Write notes on- 

     (a)   Magnetic Intensity       (b)  Magnetic Permeability      (c) Relative Magnetic Permeability 

3. Establish the relation among three magnetic vectors- 

B112 = µ0>H112 +M1112@ 

4. An iron rod of volume 10-4 meter3 and relative permeability 1000 is placed inside a long 
solenoid wound with 5 turns per cm. If a current of 0.5 Amp is passed through the solenoid, 
find the magnetic moment of the rod. 

5. A material core has 1000 turns/meter of wire wound uniformly upon it which carries a current 
of 2 Amp. The flux density in the material is 1 Wb/meter2. Calculate the magnetizing force 
and magnetization of the material. What would be the relative permeability of the core? ( µ0 = 
4π×10-7 Wb/Amp-meter 

10.12 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given i = 0.2 Amp,  n = number of turns per unit length = 20 turns/cm = 20/(1×10-2) = 2000,  
B = 1.2 Wb/meter2 

We know-                                                

Intensity of magnetic field H = n i = 2000 × 0.2 = 400 Amp/meter 

Again we know-                                     H = 
Ä
µ�

−  M 

Or                                                             M = 
Ä
µ�

−  H = 
�.�

�.��×�
�w - 400 = 9.5 × 105 – 400 

                                                                     = 950000-400 = 949600 Amp/meter 
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2. (c) Amp/meter 

3. (a) B = µ0 (H + M)  

4. (a) its conduction of magnetic lines of force through it 

5. (d) 4π×10-7 

6. (c) due to spin and orbital motion of electrons both     

 

Terminal Questions: 

4. Given V = 10-4 meter3, µr = 1000, n = 5 turns/cm = 500 turns/meter, i = 0.5 Amp 

We know         H = n i  = 500×0.5 = 250 Amp/meter 

Again,                             B = µ H = (µr µ0) H                                            ( since µr = 
µ

µ�
 ) 

                                                      = (1000×1.26 × 10-6)× 250 = 0.315 weber/meter2 

We know that-                                                B = µ0 (H + M) 

Or                                                                   M = 
Ä
µ�

−  H = 0.315/1.26 × 10-6 – 250 

                                                                             = 250×103 -250 = 2.49×105 Amp/meter 

 

Using                                                            M = 
0[
�  

Or                                                                 µM = M × V = 2.49×105 × 10-4 = 24.9 Amp/meter2 

5. Given    n = 1000 turns/meter, i = 2 Amp, B = 1 Wb/meter2, µ0 = 4π×10-7 Wb/Amp-meter 

Magnetizing force H = n i  = 1000× 2 = 2000 Amp/meter 

We know that                               B = µ0 (H + M) 

Or             Magnetization        M = 
Ä
µ�

−  H = 
�

��×�
�� – 2000 = 7.94× 105 Amp/meter 

Relative permeability              µr = 
µ

µ�
 = 

Ä/\
µ�

 = 
Ä

µ�\ = 
�

��×�
��×�


 = 397 
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11.1 INTRODUCTION 

In the previous unit, you have learnt about magnetic induction, intensity of magnetization, 
magnetic intensity, magnetic permeability and relative magnetic permeability. In that unit, you 

have established the relation between three magnetic vectors as B112 = µ0>H112 +M1112@.You have also 

classified the magnetic materials on the basis of relative magnetic permeability. In the present 
unit, you will learn about magnetic susceptibility and establish the relation between relative 
permeability and magnetic susceptibility. In the unit, you will classify the substances according 
to their magnetic behaviour. You will also know that the magnetic susceptibility and the 
magnetic permeability of the substance are not constant but vary with magnetic field strength and 
also depend upon the past history of the substance and study the hysteresis and the uses of 
hysteresis curve.  

11.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand magnetic susceptibility 
• understand Curie’s law 
• understand the magnetic substances 
• understand hysteresis and calculate the energy loss due to hysteresis 
• know the applications of hysteresis curve 

11.3 MAGNETIC SUSCEPTIBILITY 

Magnetic susceptibility is a measure of how easily a substance is magnetized in a magnetizing 
field. For some types of magnetic materials like paramagnetic and diamagnetic substances, the 

magnetization (intensity of magnetization) M1112 is directly proportional to the magnetic intensity H112 
of the magnetizing field i.e. 

M1112 α H112 

Or                                                               M1112 = χmH112                                                         .....(1) 

where χm is a constant called the magnetic susceptibility of the substance. It may be defined as 
the ratio of the intensity of magnetization to the magnetic intensity of the magnetizing field i.e. 

     χm = 
O\                                                            .....(2)  

χm  is a pure number and is unit less. Its value for vacuum is zero as there can be no 
magnetization in vacuum. We can classify the substances in terms of χm as follows- 
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                                             χm = + ve,                              substance is paramagnetic 

                                               χm = -ve,                               substance is diamagnetic 

                                               χm = +ve and very large,      substance is ferromagnetic 

However, for them, the magnetization M1112  is not accurately proportional to  H112 and therefore, χm is 
not strictly constant. 

11.4 RELATION BETWEEN RELATIVE PERMEABILITY AND 

MAGNETIC SUSCEPTIBILITY 
You know that when a substance is kept in a magnetizing field, it becomes magnetized. The total 
magnetic flux density B within the substance is the flux density that would have been produced 
by the magnetizing field in vacuum plus the flux density due to the magnetization of the 
substance. If M be the intensity of magnetization of the substance, then, we know the relation ( in 
magnitude)- 
                                                              B = µ0 (H + M)                                                      .....(3) 
where H is the magnetic intensity. 
 

But                                                         χm = 
O\ 

Or                                                         M = χm H 

Putting for M in the above expression (3), we get- 

                                                              B = µ0 (H +χm H )   

orB  = µ0 H (1+χm)                                                   .....(4)                                                           

Again we have                                      B = µH 

Now, substituting the value of B in equation (4), we get- 

µH = µ0 H (1+χm) 

or                                                          µ = µ0  (1+χm) 

or                                                          
µ

µ�
 = 1 + χm                                                             .....(5) 

Since 
µ

µ�
 = µr, the relative permeability, therefore- 

                                                             µr = 1 + χm                                                              .....(6) 

This is the relation between relative permeability and magnetic susceptibility. 
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11.5 MAGNETIC SUBSTANCES 
All substances, solids, liquids and gases, show magnetic properties. You can classify these 
substances on the basis of their magnetic behaviour- 

11.5.1 Diamagnetic Substances 

Some substances, when are placed in a magnetic field, are softly magnetized opposite to the 
direction of the magnetizing field. These substances when brought close to a pole of a powerful 
magnet, are somewhat repelled away from the magnet. They are called diamagnetic substances 
and their magnetism is called the diamagnetism. Bismuth, zinc, copper, lead, gold, silver, water, 
hydrogen, sodium chloride, nitrogen, mercury etc. are the examples of diamagnetic substances. 
Properties 

Diamagnetic substances have the following properties- 
1. These substances have negative magnetic susceptibility. 

2. The flux density in a diamagnetic substance placed in a magnetising field is slightly less    than 
that in the free space. 

3. The relative permeability of these substances is less than 1 i.e. µr< 1 for diamagnetic 
substances. 

4. The susceptibility of diamagnetic substances is independent of temperature. 
5. A diamagnetic gas, when allowed to ascend in between the poles of a magnet, spreads across 

the magnetic field. 
6. If a diamagnetic solution is poured into a U- tube and one arm of this U-tube is placed 

between the poles of a strong magnet, the level of the solution in that arm is depressed as 
shown in figure (1). 

 

 

 

 

 

 

 

 

 

 

                                                             Figure 1 
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7. In a non-uniform magnetic field, a diamagnetic substance tends to move from the stronger to 
the weaker part of the magnetic field.  If we take a diamagnetic liquid  in a watch glass placed on 
two magnetic poles very near to each other, then the liquid is depressed in the middle, where the 
magnetic field is strongest. Now, if the distance between the poles is increased, the liquid rises in 
the middle, because now the magnetic field is strongest near the poles (Figure 2). 

  

 

 

 

 

 

 Figure 2 

8. When a rod of diamagnetic material is suspended freely between two magnetic poles, then its 
axis becomes perpendicular to the magnetic field. The poles produced on the two sides of the rod 
are similar to the nearer magnetic poles (Figure 3). 
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Figure 3 

11.5.2 Paramagnetic Substances 

Some substances, when are placed in a magnetic field, are softly magnetized in the direction of 
the magnetising field. These substances, when brought close to a pole of a powerful magnet, are 
attracted towards the magnet. These substances are called paramagnetic substances and their 
magnetism is called paramagnetism. Aluminium, antimony, copper chloride, sodium, platinum, 
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manganese, liquid oxygen, solutions of salts of iron and nickel etc. are the examples of 
paramagnetic substances.   
 

Properties 

Paramagnetic substances have the following properties- 
1. These substances have positive magnetic susceptibility. 
2. The flux density in a paramagnetic substance placed in a magnetising field is slightly greater 

than that in the free space. 
3. The relative permeability of these substances is greater than 1 i.e. µr ˃ 1 for paramagnetic 

substances. 
4. The susceptibility of paramagnetic substances varies inversely as the kelvin temperature of the 

substance i.e.  

                                                                   χmα 
�V 

     This is known as Curie’s law. 
5. A paramagnetic gas, when allowed to ascend in between the poles of a magnet, spreads along 

the magnetic field.       
6. If a paramagnetic solution is poured into a U- tube and one arm of this U-tube is placed 

between the poles of a strong magnet, the level of the solution in that arm rises as shown in 
figure (4). 
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7. In a non-uniform magnetic field, a paramagnetic substance tends to move from the weaker to 
the stronger part of the magnetic field.  If we take a paramagnetic liquid  in a watch glass 
placed on two magnetic poles very near to each other, then the liquid rises in the middle, 
where the magnetic field is strongest. Now, if the distance between the poles is increased, the 
liquid depresses in the middle and rises near the edges, because now the magnetic field is 
strongest near the poles (Figure 5). 

  

 

 

 

 

 

 Figure 5 

8. When a rod of paramagnetic material is suspended freely between two magnetic poles, then its 
axis becomes parallel to the magnetic field. The poles produced at the ends of the rod are 
opposite to the nearer magnetic poles (Figure 6). 
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Figure 6 

11.5.3 Ferromagnetic Substances 

Some substances, when placed in a magnetic field, are strongly magnetised in the direction of the 
magnetising field. These materials are attracted fast towards a magnet when brought close to 
either of the poles of the magnet. These are called ferromagnetic substances and their magnetism 
is called ferromagnetism. Iron,cobalt, nickel, magnetite  etc. are some ferromagnetic substances. 
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Properties 

The ferromagnetic substances have the following properties- 

1. These substances have positive and very large magnetic susceptibility. 

2. The relative permeability of these substances is very-very greater than 1 i.e. µr ˃ ˃1 for 
ferromagnetic substances. 

3. These substances show all the properties of paramagnetic substances to a much high degree. 

4. Ferromagnetism decreases with increase in temperature. If you heat a ferromagnetic 
substance, then at a definite temperature the ferromagnetic property of the substance suddenly 
disappears and the substance becomes paramagnetic. The temperature above which a 
ferromagnetic substance becomes paramagnetic is known as Curie temperature of the 
substance. The Curie temperature of iron is 7700 C and that of nickel is 3580 C. 

     You should know that as a matter of fact, every substance is diamagnetic. In those substances 
which are paramagnetic or ferromagnetic, the diamagnetic property is masked by the stronger 
paramagnetic or ferromagnetic properties. 

11.6 CURIE’S LAW 

In 1895, Curie discovered experimentally that the magnetization or intensity of magnetization of 
a paramagnetic substance is directly proportional to the magnetic intensity H of the magnetising 
field and inversely proportional to the Kelvin temperature T i.e. 

                                                                    M α 
\V 

Or                                                                M = C 
\V                                                         .....(7) 

where C is a constant. This equation is known as Curie’s law and the constant  C is called the 

Curie constant. The law, however, holds so long the ratio 
\V does not become too large. 

M cannot increase without limit. It approaches a maximum value corresponding to the complete 
alignment of all the atomic magnets contained in the substance. 

You can express Curie’s law in an alternative form. You know that the magnetic susceptibility 
χm is defined as- 

                                                                  χm = 
O\ 

Putting the value of M from equation (7) in the above equation, we get- 
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χm = 
S_̂\  = 

SV 

or                                                                χm α 
�V 

i.e. the magnetic susceptibility is inversely proportional to Kelvin temperature.This is known as 
the Curie’s law. 

11.7 HYSTERESIS 

As you know that for ferromagnetic substances the magnetic flux density B is not a linear 
function of magnetic intensity H because in such cases, the relative magnetic permeability is not 
constant but is a function of H. In other words, we can say that there is no unique value of 
relative magnetic permeability for a particular ferromagnetic substance. The relationship 
between magnetic flux density B and corresponding magnetic intensity H for such a material 
initially unmagnetised is represented by a typical curve as shown in figure (7), known as the 
magnetization curve or B-H curve. 

 B 

 a 

 b 

                 Retentivity 

 c H 

  o f 

 Hc 

                               e 

 d 

 

                                                     Coercivity 

                                                          Figure 7 

Figure (7) represents the variation in B with variation in H. The point O represents the initial 
unmagnetised state of the substance (B =0) and a zero magnetic intensity (H =0). As H is 
increased, B increases non-uniformly along curved path oa. At a, the substance acquires a state 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 213 

 

of magnetic saturation. Any further increase in H does not produce any increase in B. Now the 
value of B becomes practically constant. 

If now the magnetising magnetic field H is decreased, the magnetic flux density B of the 
substance also decreases following a new path ab, not the original path ao. Thus B lags behind H. 
When H becomes zero, B still has a value equal to ob. The magnetic flux density in the substance 
is seen to depend upon not on the magnetic intensity alone but on the magnetic history of the 
substance as well. At point b, the specimen has become a permanent magnet since magnetization 
is still present even though the magnetising field H has been cut off. The magnetization 
remaining in the substance when the magnetising field is reduced to zero is called the ‘residual 
magnetism’. The power of retaining this magnetization is called the ‘retentivity’ or the 
‘remanence’ of the substance. In this way, the retentivity of a substance is a measure of the 
magnetization remaining in the substance when the magnetising field is removed. In the above 
figure, ob represents the retentivity of the substance. 

If now the magnetising field H is increased in the reverse direction, the magnetic flux density B 
decreases along path bc, still lagging behind H, until it becomes zero at point c where H equals 
oc. This value of H is denoted by Hc. This value oc of the magnetising field is called the 
‘coercive force’ or ‘coercivity’ of the substance. Thus, the coercivity of a substance is a measure 
of the reverse magnetising field required to destroy the residual magnetism of the substance. 
When we increase H beyond oc, the substance is increasingly magnetised in the opposite 
direction along cd and a reverse induction is set up in the substance which quickly attains the 
saturation value. At point d, the substance is again magnetically saturated. 

By taking H back from its maximum negative value, through zero, to its original maximum 
positive value, a symmetrical curve defa is obtained. At point e where the substance is 
magnetised in the absence of any external magnetising field, it is said to be a permanent magnet. 

In this way, we found that the magnetization and also the magnetic flux density B always lags 
behind the magnetising field H. The lagging of B behind H is called ‘hysteresis’. The closed 
curve or loop, abcdefa which represents a cycle of magnetization of the substance is known as 
the ‘hysteresis curve or loop’ of the substance. On repeating the process, the same closed curve is 
traced again but the portion oa is never obtained. 

11.7.1 Energy Loss due to Hysteresis 

According to molecular theory of magnetization, the molecules of magnetised or unmagnetised 
magnetic substance are themselves complete magnets. When we apply a magnetised field, the 
molecular magnets align themselves in the direction of the field. During this process, work is 
done by the magnetising field in turning the molecular magnets against the mutual attractive 
forces. This energy required to magnetise a substance is not completely recovered when the 
magnetising field is turned off, since the magnetization does not become zero. The specimen 
retains some magnetization because some of the molecular magnets remain aligned in the new 
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formation due to the group forces. To destroy them out completely, a coercive force in the 
reverse direction has to be applied. In this way, there is a loss of energy in taking a magnet 
through a cycle of magnetization. This loss of energy or heat is called ‘hysteresis loop’. Now let 
us calculate this loss of energy. 

Let us consider a magnetic material having n molecular magnets per unit volume. Let m be the 
magnetic moment of each elementary magnet and θ the angle which its axis makes with the 
direction of magnetising field H, then magnetic moment per unit volume parallel to the magnetic 
field is- 

                                             µM = Σ m cosθ                                                                       .....(8) 

The magnetic moment per unit volume perpendicular to the magnetising field is Σ m sinθ and 
this is equal to zero since there can be no magnetization perpendicular to H. 

Now, the torque due to the magnetising field acting on the dipole of moment m when it is 
inclined at an angle θ to the field is- 

                                                     τ = µ0 m H sinθ                                                        .....(9) 

and the work done when it moves through a small angle from θ to θ + dθ = - τ dθ 

                                                                          = - µ0 m H sinθ dθ 

Here minus sign comes in because the work has to be done against the magnetic field in 
increasing θ by dθ.  

Hence, the work done per unit volume of the material dW = - µ0 m H sinθ dθ            .....(10) 

As θ increases by dθ, the intensity of  magnetization M also increases by dM  obtained from 
equation (8) as- 

                                                            dM = d (Σ m cosθ) 

                                                                   = - Σ m sinθ dθ                                            .....(11) 

From equations (10) and (11), we get- 

                                                                        dW = µ0H dM                                       .....(12) 

Thus, the work done by the magnetising field per unit volume of the material for completing a 
cycle is- 

                                                                       W = ∮ dW 

                                                                            = ∮ μ
H dM = µ0∮H dM 
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= µ0 ×Area of M-H loop                    .....(13) 

Since we know that- 

B = µ0 (H + M) 

Or                                                            dB = µ0 ( dH + dM) 

Or                                                           dM = 
BÄ
µ�

 – dH                                                .....(14) 

Putting for dM in equation (13), we get- 

                                                                W = µ0∮H9 BÄ
µ�

 – dH) 

                                                                     = µ0∮H BÄ
µ�

 - µ0∮H dH 

                                                                     = ∮H dB - µ0∮H dH .....(15) 

But ∮H dH = 0, because the plot of H against H  is a straight line and the area enclosed by it is 
zero. Thus equation (15) gives- 

                                                      W = ∮H dB 

                                                           = Area of B-H loop                                           .....(16) 

Thus, the work done per unit volume of the material per cycle is equal to the area of µ0 times the 
area of M-H loop or the area of B-H loop. The unit of this work is Joule/meter3 per cycle and is 
dissipated in the form of heat. 

11.7.2 Uses of Hysteresis Curve 

Importance of hysteresis curve 

By using the hysteresis curve of various ferromagnetic materials, we can select the material 
which gives minimum hysteresis curve when put to cycle of magnetization. From hysteresis 
curve, an idea of the magnetic properties like susceptibility, permeability, retentivity, coercivity 
of a ferromagnetic material can be made. 

The choices of a magnetic material for the construction of a permanent magnets, electromagnets, 
cores of transformer and magnetic shielding can be decided from the hysteresis curve of the 
sample. 

(i) Permanent magnets- The materials used for permanent magnets must have the following 
characteristics- 
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a) high retentivity so that the magnet may cause strong magnetic field 

b) high coercivity so that the magnetization is not wiped out by strong external fields, 
mechanical ill-treatment and temperature changes. The loss due to hysteresis is immaterial 
because the magnet in this case is never put to cyclic changes. 

According to these considerations, steel is better for permanent magnets than soft iron. 

(ii) Electromagnets- The material used for cores of electromagnets must have- 

a) maximum flux density with comparatively small magnetising field 

b) high initial permeability 

c) low hysteresis 

d) low coercivity 

e) high retentivity 

Considering these facts, soft iron is an ideal material for electromagnets. 

(iii) Transformer cores, Telephone diaphragms, Armature of dynamos and motors and 

cores of choke-In these cases, the material is subjected to cyclic changes of magnetization. 
Their material, therefore, must have the following characteristics- 

a)  low hysteresis loss 

b)  high initial permeability 

c) high specific resistance 

Therefore, soft iron is a good material for these purposes. 

(iv) Magnetic shielding- The magnetic material used for magnetic shield must have high 
saturation induction and very low coercivity.  

Example 1:A substance has magnetic susceptibility equal to 2. Calculate the relative 
permeability. 

Solution: Given, χm = 2 

We know- 

                                          µr  = 1 + χm = 1 + 2 = 3 

Example 2:The relative permeability for a material is 3. What will be its magnetic 
susceptibility? 
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Solution: Given µr = 3 

We know that- 

µr  = 1 +  χm 

or                                    χm = µr – 1 = 3-1 = 2 

 

Self Assessment Question (SAQ) 1:Choose the correct option- 

Diamagnetic substance when placed in a magnetic field is- 

(a) weakly attracted             (b) strongly attracted       (c) repelled      (d) none of these 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The magnetic susceptibility of a diamagnetic material is- 

(a) large and positive  (b) large and negative    (c) small and positive     (d) small and negative 

Self Assessment Question (SAQ) 3:Choose the correct option- 

Which one represents the Curie’s law- 

(a) χm α 
�V                (b) χm α 

ÄV                    (c) χm α 
�V�                (d) χm α 

�V� 

11.8 SUMMARY 

In the present unit, you have learnt about magnetic susceptibility, different types of magnetic 
materials and Curie’s law. The magnetic susceptibility is defined as the ratio of the intensity of 
magnetization to the magnetic intensity of the magnetizing field. According to Curie’s law, the 
magnetic susceptibility of a magnetic material is inversely proportional to Kelvin temperature. 
You have also study about hysteresis, energy loss due to hysteresis and the applications of 
hysteresis loop. In the unit, you have calculated the energy loss due to hysteresis and  proved that 
the work done per unit volume of the material per cycle is equal to the area of µ0 times the area 
of M-H loop or the area of B-H loop. To present the clear understanding of the unit, some solved 
examples are given in the unit. To check your progress, self assessment questions (SAQs) are 
also given in the unit. 

11.9 GLOSSARY  

Align- line up, bring into line, arrange in a line 
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Hysteresis- When a ferromagnetic substance is first magnetized by external applied field H and 
then demagnetized, then the flux density lags behind the field H. This is called 
hysteresis. 

Magnetization- The magnetic state of any substance is described by a quantity  

11.10 TERMINAL QUESTIONS 

1. Define magnetic susceptibility. 

2. Define relative permeability. 

3. What is hysteresis? What does the area of hysteresis curve represent? 

4. What do you mean by retentivity and coercivity? Explain. 

5. How will you classify the substances on the basis of magnetic susceptibility? 

6. Establish the relation between relative permeability and magnetic susceptibility. 

7. Discuss the classification of substances on the basis of their magnetic behaviour. 

8. Discuss the properties of dia, para and ferromagnetic materials. 

9. Explain Curie’s law. 

10. What are the importances of hysteresis curve? Explain. 

11.  Steel is better for permanent magnet than soft iron. Why? 

12. Why soft iron is an ideal material for electromagnet? 

13. The relative permeability for a material is 6. What will be its magnetic susceptibility? 

11.11 ANSWERS 

Self Assessment Questions (SAQs): 

1. (c) repelled 
2. (d) small and negative 

3. (a) χm α 
�V 

Terminal Questions: 

13. Given µr = 6 

We know that- 
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µr  = 1 +  χm 

or                                    χm = µr – 1 = 6-1 = 5 
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12.1 INTRODUCTION 

In this unit we shall discuss the dynamics of charges. When the charges are stationary, an 
electrostatic field and static potential are developed in their vicinity. If the charges are placed in a 
region of non-uniform potential, they start to move and a current is set up. In conductors the 
electrons in the outermost orbits are relatively loosely bound to their respective atoms. When 
these conductors are placed in an electric field, a force starts to act on these free electrons. The 
direction of the force on positive charges is along the direction of the field and on negative 
charges is opposite to the field. The free charges start to move under the action of this force. The 
flow of free charges in a conductor constitutes electric current. 

12.2OBJECTIVES 

When you finish your study of this unit you should be able to 

• define electric current, its units and the conditions necessary for flow of current. 

• tell what are resistance, conductance, resistivity and conductivity. What are their symbols 
and what units are used to measure them? On what factors these quantities depend. 

• describe the relationship between voltage (potential difference),current and resistancein a 
simple circuit(Ohm's Law).Physical significance of Ohm’s law and its vector form. 

• define drift velocity and current density. 

• state equation of continuity and its physical significance 

• discuss the Wiedemann-Franz law and its drawbacks. 

• solve numerical problems involving the values of voltage (potential difference), current, 
resistance, drift velocity, current density, resistivity, conductivity etc. 

12.3 ELECTRIC CURRENT 

  In an electric circuit the charge is often carried by moving electrons. It can also be carried 
by ions in electrolyte. The rate at which charge flows past a point in a circuit is called the 
current. The current is a physical quantity that can be measured and expressed numerically. The 
current in a circuit at any instant can be measured by determining the quantity of charge passing 
per second through the cross-section of the wire at that instant. 

 If the rate of flow of charge is independent of time (i.e. steady) and q charge flows through the 
circuit in time t then current is given by 

² =  J
å       ------------- (1) 

If the rate of flow of charge varies with time then the instantaneous current is given by 
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² = �J
�å   ------------ (2) 

 

 

Figure 1: Charge q is passing through the cross-section of wire in time t, i.e., i = q/t 

 

If the charge is measured in Coulomb and time in seconds then the unit of current is Ampere. 
Ampere is often shortened to Amp(amp) and is abbreviated by the unit symbol A. Thus a current 
of 1 ampere means that there is 1 Coulomb of charge passing through the cross-section of wire 
every 1 second. 

i.e.,               1 ampere = 1 Coulomb/1 second 

Electric current is a scalar quantity as it does not follow the law of vector addition. The arrows 
used in the electric circuits represent the direction of flow of positive charge. 

Example 1: 1.0 mm long cross section of wire is isolated and 10 C of charge is allowed to pass 
through it in 10 s.Determine the value of current through it. 

Solution: The current is given by,     I = 
J
å=

�
 �
�
 �=0.5amp. 

Example 2: In a discharge tube, the 1.1x1019 electrons move parallel to the tube while 3x1018 
positive helium ions move in a direction opposite to that of electrons through the cross section 
per second. Find the magnitude and direction of the current. 

Solution:The current due to positive ions will be along the same direction as that of the motion of 
these ions. The direction of current due to the motion of electrons will be opposite to the 
direction of motion of electrons. Thus in the given problem, the contribution of current from 
positive ions and the electrons will be along the same direction and hence will be added. 

The charge on each electron,  q1 = 1.6x10-19 C. 

 
q 

i 
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Number of electrons,   n1 = 1.1x1019 

The current due to electrons,  I1 =
ù�J�

å�  

=
�.� × �
�� × �.� × �
���

�  = 1.76 A 

The charge on each helium ion, q2 =1.6x10-19 C. 

The number of helium ions,   n2 = 3x1018. 

The current due to helium ions, I2 =  
ù�J�

å�  

=
: × �
�Z × �.� × �
���

�  = 0.48 A 

Thus the total current through discharge tube,  

I = I1 + I2 = 1.76 + 0.48 = 2.24 A 

The direction of the current will be along the direction of the movement of positive helium ions. 

Self Assessment Question (SAQ) 1: A current of 1.6 amp exist in 10 ohm resistance for 1 
minutes. How many electrons pass through any cross-section of the resistance in this time? 

Self Assessment Question (SAQ) 2: Whether the current is a scalar quantity or vector quantity. 
Justify your answer. 

Self Assessment Question (SAQ) 3: In the absence of any external field the free electrons in 
metallic conductor do not contribute anything towards current density. Justify. 

12.4 DRIFT VELOCITY 

You should have learnt by now that in a conductor the outermost orbit electrons in the 
atom are loosely bound and almost free to move from one place to another within the conductor 
because of the available thermal energy. In the absence of any field the motion of these free 
electrons is random just like the gas molecules in a vessel. They are, therefore, also called 
electron gas. 

In a metal when free electrons leave their atoms, the metal is left with positive ions. These 
electrons, during their motion, collide again and again with the positive ions and continuously 
change their directions of motion. Thus their velocities (due to thermal agitation) are randomly 
distributed and consequently the average velocity is zero. In other words we can say that the net 
transport of charge in any particular direction is zero and therefore, the electric current on 
account of thermal motion of free electrons is zero. 
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Figure 2: Drift motion of charge carriers in the direction of a field 

 

Now if a potential difference is set upbetween the two ends of a conductor, say by 

connecting a battery in the circuit, then the free electrons experience a force of -e�12. Where e is 

the electronic charge and �12 is the electric field developed. Negative sign indicates that the force 
on electrons is in the direction opposite to that of field direction. Due to this force the free 
electrons (charge carriers) are accelerated and in the way interact with the other free electrons 
and positive ions present in the conductor. In each collision they loss their energy and again 
accelerate by the field present. So we can think of backward force acting on the electrons during 
their motion. This force is called collision drag. 

The overall effect of applying potential difference between two ends of a conductor is that it 
gives a small constant velocity to charge carriers along the length of the conductor. This is 
known as drift velocity. Thus the average velocity with which the charge carriers move, under 
the action of electric field, is known as drift velocity. The drift velocity is usually represented as 
vd. 

E 
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Figure 3: Motion of the charge carries (electrons) in a conductor on theapplication of electric field 
and the current in the circuit 

 

12.5 CURRENT DENSITY 

If a current is flowing in the conductor then the current per unit area of it, when the area is taken 
along a direction normal to the current, is known as current density. Let us consider a current 
flowing through a conductor of length l and uniform cross-sectional area A. suppose this current 
is due to the motion of the electrons only. These electrons will possess the average drift velocity 
vd in a direction opposite to that of applied field. The value of vd for one second, in fact, gives 
the distance travelled by the electrons in one second. Therefore, the volume of the cylinder 
around the path traversed by electron in one second is given by 

E

  

e

e

e e

e

e e

e

e

e

e
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Y� =  ��11112.Y±11112------------ (3) 

 

Figure 4: The small volume element of volume`a11112 . ab11112 
 

If N is the number of charge carriers (electrons of charge e) per unit volume then the charge 

passing through the area Y±11112 in one second is  

dq = N e ( ��11112.Y±11112 )------------ (4) 

 But charge passing per second is nothing but the current, hence 

dI=N e ( ��11112.Y±11112 )------------ (5) 

 Here, the quantity N e  ��11112 is a vector, called the current density. The direction of the current 
density at a point is that along which a positive charge carrier would move if placed at that 

point. The current density is represented by J2  and has the same direction as that of drift velocity. 

i.e.,    J2= N e  ��11112                                                ------------ (6) 

 From equations (5) and (6) we can write down 

dI =J2.Y±11112------------ (7) 

E 

 

e 

e 

e e 

e 

e e 

e 

e 

  
dV 
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If we take a small element dIthrough a small area ds around a point and if ds is normal to dI then 
current density at that point is given by 

J2=�c
�� ³�------------ (8) 

 Where unit vector ³� represents the direction of current. 

 If ds⊥ is the area element perpendicular to the current at a point then, current density may also be 
defined as 

J2= �c
��⊥------------ (9) 

From equations (5) and (7) we can write an expression for the total current through a total surface 
S, using surface integral, as 

.
S

I dI J dS= =∫ ∫
rr

 

( . )d

S

I Ne v dS= ∫
rr

------------ (10) 

Here integral sign with S represent the integration over the entire closed surface taken into 
consideration (surface integral). 

Example 3: An aluminium wire whose radius is 0.05 cm is welded end to end to a copper wire 
with a diameter of 0.068 cm. the composite wire carries a current of 5.0 ampere. What is the 
current density in each wire? 

Solution: The cross-sectional area of aluminium wire is  

A1 = � Z� = 3.14 x (0.05)2 = 0.00785 cm2 

Therefore the current density in it is 

J = 
c
Ã =  �


.

7y� = 636.94 §��/µ�� 

The cross-sectional area of copper wire is 

A2 = � Z� = 3.14 x (0.034)2 

= 0.00363 cm2 

Therefore the current density in it 

J = 
c
Ã =  �


.

:�: 
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= 1377.41 §��/µ�� 

Example 4: A current of 1.0 ampere is flowing through a copper wire. If the area of cross-
section of wire be 0.01 cm2, find out the drift velocity of electrons in it. Assume one free electron 
per atom of copper and number of copper atoms in one cm3 is 8.0 x 1022. 

Solution: The expression for drift velocity is 

�� =
e

ù � =  c
ù � Ã           (∵ J = i/A; 

It is given that I = 1.0 ampere, n = 8.0 x 1022 cm-3 = 8.0 x 1028 metre-3, e = 1.6 x 10-19 C, and A = 
0.01 cm2 = 1.0 x 10-6 metre2 

∴                                   �� =  1.0
98.0 ×  10�y;b91.6 × 10?�8; × 91.0 ×  10?�;  

                                       = 7.81 x 10-4 m/s. 

Example 5: In a region 40% of electrons have a drift velocity 2.0 cm/s along the direction of 
negative X-axis while the rest are moving with a drift velocity of 3.0 cm/s along positive 
direction of X-axis. Find the current density in the region assuming 5× 1022 electrons per c.c. 
present in the region. 
Solution: We know that the direction of current is taken opposite to the motion of the electrons. 
Thus due to the electrons motion along negative X-axis the current will flow along positive X-
axis and vice-versa. 
∴ Current density along positive X-axis 

J+ = N e vd=
�


�

  × 5 × 10��  × 1.6 ×  10?�8  × 2.0 

= 6.4 ×  10:amp/cm2 
Similarly the current along negative X-axis 

J- = N e vd = 
�


�

  × 5 × 10��  × 1.6 × 10?�8  × 3.0 

= 14.4 ×  10:amp/cm2 
Thus the net current density will be along negative X-axis and its value will be 

J = J- ~ J+ = 14.4 ×  10: - 6.4 ×  10: 

= 8.0 × 103 amp/cm2 

Self Assessment Question (SAQ) 4: A copper wire of diameter 0.1626 cm is welded end to end 
with an aluminium wire of same radius. The composite wire carries a current of 20 amp. 
Calculate the current density in the wire and drift velocity of electrons in copper wire by 
assuming one free electron per atom in copper. The molecular weight of copper is 64, its density 
is 9.0 g/cc and the Avogadro number is 6 × 1023. 
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Self Assessment Question (SAQ) 5: A current of 1.0 amp is flowing through an aluminium wire 
of cross-sectional area 10-6 m2. There are 1022 free electrons per cm3. The resistivity of 
aluminium is 1.6×10-3 ohm-m. Find the average speed of electrons in aluminium and the electric 
field within the wire. 

Self Assessment Question (SAQ) 6. A copper wire of diameter 1.0 mm carries a charge of 90 
coulombs in 75 minutes. It contains 5.8x1022 free electrons per cm3. Find the current in the wire 
andthe drift velocity of electrons. 

Self Assessment Question (SAQ) 7: A copper wire of cross-section 10-4 m2 carrying a current 
of 1.5 amp. If each atom contributes one free electron, calculate the drift velocity of free 
electrons. The atomic weight and density of copper are 63 and 9 g/cc respectively. 

 

12.6 EQUATION OF CONTINUITY 

  By now you have understood that how the drift velocity of charge carriers is responsible 
for current and how the current is related with current density. We can say that the amount of 
electric charge at any point can only change by the amount of electric current flowing into or out 
of that point. 

The continuity equation in physics describes the transport of some quantity. This equation 
tells us that any physical quantity (like energy) can move by a continuous flow. It cannot be 
teleported from one place to another. The equation of continuity in electric field is a relation 

between volume charge density ρ and current density vector J2, this equation is given by 

  g12.J2 +`É
`å= 0------------ (11) 
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Figure 5: A closed surface S enclosing a volume V and small area element ds enclosing a volumedV.   
Vectors J2 and ab11112 represents the area vector and current density directions 

 

In order to prove this equation, we consider a closed surface S enclosing a region of 

volume Vand take an area element Y±11112 at point P of this surface. If J2 is the current density vector 

at thatpoint then charge flowing out from area element Y±11112 per second (current) is given by 
equation (7) as 

dI = J2.Y±11112------------ (12) 

Thus the total charge crossing the surface S per second (current) is given by equation (10) as 

.
S

I dI J dS= =∫ ∫
rr

------------ (13) 

If the current density (J2) remains unchanged with time everywhere then the current is said to be 
steady or stationary. Taking a case when current is not steady. The total charge enclosed by the 
closed surface, in terms of volume charge densityh, is given by 

    q = ∭h Y�                                             ------------ (14) 

Where triple integral sign represents the integral over the entire volume i.e., the volume integral. 
Thus time rate of decrease of charge within the surface is given by 

  − �J
�å = i =  − `

`å∭ h Y�                             ------------ (15) 

 

 

S, V 
P 

dV 
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From the conservation of charge we know that the total charge crossing the surface per second 
will be equal to the rate of decrease of charge in the volume enclosed by that surface. Thus from 
equations (13) and (15), we have 

.
S

I J dS= ∫
rr = − jjk∭hY�=−∭ jhjk Y�                    ------------ (16) 

From Gauss divergence theorem the surface integral of equation (16) may be converted into 
volume integral as 

.
S

I J dS= ∫
rr

=∭>g12. J2@ Y�                                ------------ (17) 

Using equation (17) into (16), we obtain, 

∭>g12. J2@ Y�=−∭ jhjk Y�                               ------------ (18) 

or                    g12.J2  = − Öv
Öî------------ (19) 

 or  g12.J2 + 
`É
`å  = 0------------ (20)  

or divJ2 + 
`É
`å  = 0------------ (21) 

This equation is known as equation of continuity and represents the conservation of charge. The 

first term divJ2in this equation represents the net outward flow of electric current per unit area 

from the closed surface S while the second term 
`É
`å  gives the rate of change of charge per unit 

volume. 

12.7 RESISTIVITY AND CONDUCTIVITY 

On the basis of his experimental observations George Simon Ohm (1787-1854) find out 
that the current passing through a conductor is directly proportional to the potential difference 
applied across its two ends, provided the physical conditions (temperature etc.) remain the same. 
This is known as Ohm’s law. Thus if I is the current flowing through the conductor when 
potential difference between its two ends is V then from Ohm’s law we have 

I∝ V 

or                                                I = k V------------ (22) 
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Where the proportionality constant k is known as the conductance of the conductor. Alternately 
we can say that the potential difference developed across the ends of a conductor is proportional 
to the current flowing through it, i.e.,  

V ∝ I 

V = R I------------ (23) 

Where the constant of proportionality R is called the resistance of the conductor. From equations 
(22) and (23), we have, 

k = 
�
¢------------ (24) 

Thus the conductance is reciprocal of resistance. The SI unit of resistance is ‘ohm’ and 
therefore that of conductance is (ohm)-1 or ‘mho’. From equation (23) we can say that if on the 
application of 1 volt potential difference between the two ends of a linear conductor a current of 
1 amp flows through it then its resistance will be 1 ohm. The conductors obeying Ohm’s law are 
called Ohmic conductors or linear conductors and not obeying Ohm’s law are called non-Ohmic 
conductors. The Ohmic conductors show a linear variation of I with V while non-Ohmic 
conductors show a non-linear variation. 

At a given temperature the resistance of an Ohmic conductor is directly proportional to its length 
l and inversely proportional to its area of cross-section A, i.e., 

R ∝ ��------------ (25) 

or                        R =h ��------------ (26) 

The constant of proportionality h is known as the specific resistance or resistivity of the material 
of the conductor. Thus resistivity 

h = R
Ã
L ------------ (27) 

The SI unit of resistivity is Ohm-metre. Resistivity is the property of the material. It is 
independent of the shape and size of the conductor but depends on the nature and temperature of 
the material. From equation (27) we can say that the resistivity of the material of conductor of 
unit length and unit area of cross-section is equal to its resistance. The reciprocal of resistivity 
(or specific resistance) is known as electrical conductivity (or specific conductance) and is 
represented by symbol ¹. Thus  

¹=
�
É =

L
¢ Ã------------ (28) 
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The SI unit of electrical conductivity is (Ohm-metre)-1 or mho/metre. 

Now for a linear conductor of homogeneous material (Ohmic medium) if I is the current flowing 
through it, J is current density, A is the area of cross-section and V is the potential difference 
applied across its ends, then electric field inside the conductor has magnitude 

� =  �
L ------------ (29) 

orV = E l------------ (30) 

and current in terms of current density may be written as 

I = J A------------ (31) 

From equations (23), (30) and (31) we can write 

E l = R J A                                           ------------ (32) 

or                                                             J =
L

¢ Ã  �------------ (33) 

Using equation (28) in (33), we get, 

J = ¹ E                                             ------------ (34) 

Thus for homogeneous material the current density J at any point is proportional to electric field 
strength E as long as the field is low. In vector notation it can be written as 

J2=¹ �12                                              ------------ (35) 

This is known as vector form of Ohm’s law. The electrical conductivity ¹ may also be defined as 
the ratio of current density J to electric field strength E, i.e., 

¹= 
le2llÜ12l------------ (36) 

The SI unit of ¹ is   
¤âÁ�A�/â�åA��

ä�Lå/â�åA� = (Ohm-m)-1 or Siemens per metre (S-m-1). Again since 

resistivity (h) is reciprocal to the conductivity (¹), it may also be defined as 

ρ =  �
t =  l�112lle2l                                    ------------ (37) 

The resistivity of a good conductor increases with temperature. The conductivity is the reciprocal 
of resistivity, therefore, decreases with increasing temperature. At very low temperature it 
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becomes very large and at temperatures near absolute zero, the conductors become 
superconducting. 

 

Example 6: For a current of 1.0 ampere through a copper wire of length 10 m and diameter 0.08 
mm, the resistance of the wire is 32.85 ohm. Calculate the resistivity of wire and potential 
difference between its two ends. 

Solution: The resistivity of copper wire is given by 
 

h =  È �
� =  È � Z�

�  

Given that, R =32.85 ohm, Radius (r) = 

.
y

�  �� = 0.04 × 10?: m, �  = 10 m         

∴            h =  32.85 �ℎ� × 3.14 × 90.04 ×  10?:;���
10 �  

= 1.65 ×  10?y �ℎ� −� 
The potential difference between two ends of the wire,  

V = R I = 32.85 ohm × 1 amp = 32.85 volts 

Example 7: A metallic wire carries a current of 1 amp. Its area of cross section is 0.1 cm2 and 
the resistivity of metal is 1.7×10-7 ohm-m. Calculate the electric field strength in the copper and 
the potential difference between two points 20 m apart along the length of this conductor. 

Solution: The current density in terms of electric field strength is given by 

J = σ E 

or E = 
e
¥ =  c/Ã

�/É = É c
Ã  

It is given that h = 1.7× 10-7 ohm-m, I = 1.0 amp, A = 0.1 cm2 = 0.1×10-4 m2 and l =20 m 

∴   E = 
�.7×�
��×�.



.�×�
�q =1.7×10-2 volt/m 

The required potential difference 

V =E l = 1.7×10-2× 20 = 0.34 volt 

Self Assessment Question (SAQ) 8: An aluminium wire of cross-section 1 cm2 carries a current 
of 5.0 amp. What will be the value of electric field within the conductor. Also find the value of 
potential drop across its 2.0 km length. Resistivity of aluminium is 1.7× 10-6 ohm-cm. 
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Self Assessment Question (SAQ) 9: A conductor of uniform cross-sectional area is 130 cm 
long. It has a voltage of 1.3 volt across its ends and a current density of 6.65×105 Am-2. What is 
the conductivity of its material? 

12.7.1 Conductivity- an atomic view  

  Due to the electric field �12 inside the conductor a force q�12 starts acting on charge carriers 

of charge q each. If m is the mass of charge carrier then its acceleration will be q�12/�. During 
their motion in the electric field, the charge carriers suffer collisions in the way and again 
accelerated. Just after a collision the velocity of charge carrier can be assumed to be zero. It then 

speed up with an acceleration q�12/�and therefore, from equation of motion, its velocity after 
time t is given by 

�2 = 0 +  J Ü12
â  k------------ (38) 

If the charge carriers are electrons with negative charge then the average drift velocity is 

��11112 =  
zä
� =  − �

�
� Ü12
â  N------------ (39) 

Where N is the relaxation time (the time between two successive collisions. The expression for 
current density due to flow of electrons is obtained from equation (6) by replacing charge e with 
charge of electron –e as  

�2 = − o þ ��11112------------ (40) 

Substituting the value of ��11112 from equation (39) into (40), we get, 

�2 =  � �� Õ
� â �12------------ (41) 

Comparing equations (35) and (41), we can write 

¹ =  o þ2 N
2 �                                       ------------ (42) 

For a given sample, N, e and m are constant quantities independent of�12. If time is also constant 
then 

¹ =  e2Ü12 = 
� �� Õ

� â  = constant                         ------------ (43) 

Since in a conductor there are large numbers of charge carriers, the total charge density is given 
by 
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�2 = ∑ �ó�ó�Õó
� âó�  �12                                         ------------ (44) 

Here Ni, ei, τi and mi represent the number density, charge, relaxation time and mass of one type 
(say ith) of charge carrier. 

12.7.2 Wiedemann-Franz law  

  The rate of heat transfer from one portion to another within the material depends upon the 
temperature gradient and thermal conductivity of the material. Thermal conductivity of metals is 
quite high. The metals which are good thermal conductors are generally good electrical 
conductors.  

At a given temperature the electrical and thermal conductivities of a metal are proportional 
to each other. On increasing the temperature, the thermal conductivity increases while the 
electrical conductivity decreases. This behavior is depicted by Wiedemann-Franze law. This law 
is named after Gustav Wiedemann and Rudolph Franz, who in 1853 reported that the ratio of 
thermal conductivity (K) to electrical conductivity (σ) has almost the same value for different 
metals at the same temperature. The proportionality of K/σwith temperature was discovered by 
Ludvig Lorentz in 1872. Thus mathematical formof Wiedemann-Franz law can be written as 

À
¥  ∝ q------------ (45) 

or                                                              
À
¥  = r q                                        ------------ (46) 

where K is thermal conductivity, σ is electrical conductivity and the constant of proportionality L 
is called the Lorentz number. The relationship between two conductivities is based on the fact 
that the heat and electrical transport both involve the free electrons in the metal. 

 On increasing the temperature, the average velocity of the carriers increases. This increases the 
forward transport of energy (thermal) and hence thermal conductivity increases. The electrical 
conductivity decreases with increasing temperature as the collisions divert the electrons from 
forward transport of charge. Thus the ratio of thermal conductivity to electrical conductivity 
varies with the square of average velocity. If we consider the electron gas model then the thermal 
conductivity of a Fermi gas is given by 

Ê =  ��
:  . � ís�  �

â ät� �Þ . � =  �� � ís�  � Õ
: â ------------ (47) 

Where uÂ is Boltzmann constant, vF is the velocity at Fermi surface, N is electron concentration, 
l is mean free path (the path between two successive collisions) and τ is the relaxation time (the 
average time between two successive collisions) and therefore we have, l = vF.τ. Again we know 
that electrical conductivity is given by equation (42) as 
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¹ =  o þ2 N
2 �                                  ------------ (48) 

Therefore Lorentz number 

r = À
¥ �  =  �

: ��9 ís�  ;�------------ (49) 

The value of L calculated by this formula is in good agreement with the experimental 
results. Experiments performed for measurement of electrical and thermal conductivities show 
that the value of L is not exactly the same for all materials. In the book entitled ‘Introduction To 
Solid State Physics’ 5th edition, New York: Wiley 1976, p.178 by Charles Kittel, some values of 
L are given; ranging from L = 2.23x10-8 for copper at 00 C to 3.2x10-8 W Ω K for tungsten at 
1000 C. Rosenberg noted that Wiedemann-Franz law is generally valid for high temperatures and 
low temperatures but may not hold true at intermediate temperatures. 

Example 8: Considering electron gas model, calculate the average time between two successive 
collisions of an electron with positive ions in copper. The electron concentration is 1028 per m3 
and resistivity of copper is 1.7 × 10-7 ohm-m. 

Solution: It is given that  

N = 1028 electrons per m3, and h = 1.7 × 10-7Ω-m 

Thus conductivity,               ¹ = 
�
É =  �

�.7×�
�� 

= 5.88 × 10�9Ω− m;?� 

In electron gas model, the conductivity is given by 

¹ =  o þ� N
2 �  

∴ N =  2 � ¹o þ� = 2 × 99.1 ×  10?:�; × 5.88 ×  10�
10�y × 91.6 ×  10?�8;�  

= 4.18 × 10?��±. 

Self Assessment Question (SAQ) 10: What will be the conductivity in a copper wire having 
electron concentration 1022 per cm3. The relaxation time of electrons is 4.18×10-14 s. The charge 
and mass of electron are 1.6×10-19 C and 9.1×10-31 kg respectively. 

12.8 SUMMARY 

 In this unit you have studied about the motion of the charge in an electric field and its 
consequences. To discuss the physics involved, various physical quantities like electric current, 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 238 

 

drift velocity, current density, resistivity, conductivity etc are explained and equation of 
conductivity and Wiedemann-Franz law are also described in detail. You have learnt that the free 
charge carriers are responsible for electric conduction in materials. In the absence of any field the 
free electrons move randomly due to available thermal energy. Thus the net current in any 
direction is zero. When an electric field is applied a force starts acting on them and electrons 
acquire a net velocity along a specified direction. Due to this drift of electrons a conduction 

current is set up. The current density of this current is given byJ2= N e ��11112. Conductivity, the 

reciprocal of resistivity, is defined as ¹=  
�
É =  

L
¢ Ã.The vector form of Newton’s is given by the 

equation J2=¹ �12 andthe resistivity in terms of electric field strength and current density is defined 

asρ =  �
t =  l�112lle2l. At atomic level the conductivity equation modifies to ¹ =  o þ2 N

2 � . The 

conservation of charge in space is given equation of continuity divJ2 + 
`É
`å  = 0. The Wiedemann-

Franz law gives the proportionality relation between thermal conductivity and electrical 

conductivity as
À
¥  = r q.The understanding of the solved examples given in the unit provide 

reader an easy grasp of the subject and the reader can check his or her progress by going through 
self assessment questions. 

12.9 GLOSSARY 

Vicinity – nearness or closeness of space; In the vicinity – near. 

Constitute – be the components or essence of, make up, form. 

Respectively – in the order mentioned, for each separately or in turn. 

Significance – importance, noteworthiness, a concealed or real meaning. 

Drift – slow movement or variation. 

Instantaneous – occurring or done in an instant or instantly (immediately). 

Discharge – let go, release. 

Assessment –estimate the size or quality or value etc., evaluation 

Random – made, done, move etc., without method or conscious choice. 

Interaction –the action of atomic and sub atomic particles on each other, reciprocal action or 
influence. 

Drag – pull along (with effort or difficulty). 
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Traverse – travel or lie across. 

Composite –made up of various parts. 

Teleport – move at a supposedly by paranormal means. 

Conservation –constancy of any quantity (preservation). 

Homogeneous – consisting of parts all of the same kind, uniform. 

Suffer – undergo, experience or be subjected to (pain, loss, grief, defeat, change etc.). 

Successive – following one after another. 

Gradient – the rate of rise or fall of temperature pressure etc. 

Depict –to describe. 

Vary – undergo change (become or be different) 

12.10 TERMINAL QUESTIONS 

1. Define electric current, drift velocity and current density. Is current density a vector quantity 
or scalar quantity? 

2. A copper conductor of cross sectional area 10-4 m2 carries a current of 200 amp. There are 
about 8.5×1028 free electrons per m3 and the resistivity of copper is 1.72×10-8 ohm-m-1. Find 
the drift velocity of free electrons, the average electric field strength and the potential 
difference between two points of the conductor 200 m apart. 

3. The conductivity of sulphur is about 10-15 mho/m. Find the current density in sulphur when it 
is subjected to an electric field of 2000 volts/cm. 

4. Derive the expression � = o þ �� for current density. 

5. What will be the current in a hydrogen discharge tube if in each second 4×1018 electrons and 
1018 protons move in opposite direction through the cross section of the tube? 

6. The conductivity of a copper wire is 3.5×107 mho/m. It carries a current of uniform density 
8×105 A/m2. Find the electric field in the wire and the potential difference per unit length of 
the wire. 

7. Define specific resistance and electrical conductivity. Using Ohm’s law derive relation� =
 ¹ � 

8. Derive an expression for equation of continuity. What is its physical significance? 
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9. State Wiedemann-Franz law and write an expression showing the mutual dependence of 
electrical and thermal conductivities.  

12.11 OBJECTIVE TYPE QUESTIONS 

Q.1. The specific resistance of a wire depends upon 

(a) its length      (b) its cross-sectional area 

(c) its dimensions      (d) its material 

Q.2. The resistance of a wire is doubled if 

(a) its radius and length both are doubled  (b) its radius is doubled and length is halved 

(c) its radius is halved and length is doubled (d) its radius and length both are halved 

Q.3. The resistance of a wire of uniform diameter d and length l is R. The resistance of another 
wire of same material but diameter 2d and length 4l will be 

(a) 2R   (b) R    (c) R/2   (d) R/4 

Q.4. Zero potential difference is applied across a metallic conductor. The mean velocity of free 
electrons at absolute temperature T is: 

(a) proportional to T      (b) proportional to √q 

(c) zero        (d) finite but independent of 
T 

Q.5. The equation, J = ¹ � is a form of  

(a) Ohm’s law       (b) Ampere’s law 

(c) continuity equation      (d) Maxwell’s equation 

Q.6. The continuity equation for steady current gives 

(a) ∇. �2= 0                                                                     (b)∇. �2 = − `É
`å  

(c) ∇ × �2= h       (d) ∇. �2 = h i 
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12.12 ANSWERS 

Self Assessment Questions (SAQ): 

1: The charge passed through the cross-section of the resistance in 2 minutes is 

q = I t = 1.6 amp × (1 × 60) sec = 96 C 

Thus the number of electrons passing through the cross section of resistance in 2 min 

N = 
J
� =  8�

�.� ×�
��� = 6.0 × 10�
 

2: Refer Article 13.3. 

3: Refer Article 13.4. 

4: The area of cross-section of wire is 

� =  � Z� = 3.14 × w0.1626 × 10?�
2 x�

 

= 2.075 × 10?��� 

Thus the current density in wire 

� =  i� =  20
2.075 ×  10?� 

= 9.636 × 10� �/�� 

The density (h) of copper is 9.0 g/cc, thus the mass of the copper per unit volume is 9.0 g. Since 
64 g (molecular weight, M) of copper contains 6 × 1023 atoms (Avogadro number, NA), the 
number of atoms per unit volume, N (number of atoms in 9.0 g) will be  

o =  h oÃy =  9.0 × 6 × 10�:
64  

= 8.437 ×  10�� þ�þµkZ�³±
µ�:  

= 8.437 ×  10�y þ�þµkZ�³±/�: 

The current density is given by J = N q vd.Thus 

�� =  �o � =  9.636 ×  10�
8.437 ×  10�y  × 1.6 × 10?�8 
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= 5.668 × 10?� �/±. 

5: The drift velocity 

�� =  �³ � =  i �Æ³ � = 6.25 ×  10?� �/± 

We also know that, 

� =  ¹ �  
or     � =  e¥ = � h = 1.6 × 10?� �/� 

6: (i) The current in the wire, 

I = 
å�å¤L Ì÷¤Aø�

å�å¤L å�â� =  8
 �
7� ×�
 ��Ì = 0.02 � 

The current density,   J = n e vd 

or   
c
Ã = ³ þ ��     (∵ � =  cÃ) 

Here n = 5.8x1022 electrons/cm3= 5.8x1028 m3, e = 1.6x10-19C, r = 
�.
j�
��

�  = 0.5x 10-3 m 

∴A = � ×  Z�= 3.14x (0.5x 10-3)2 

Thus    vd= 
c

ù � Ã =  
.
�
9�.y×�
�Z;9�.�×�
���;×:.��×9
.�×�
��;� 

= 2.746x10-5 m/s 

7: Current density � =  cÃ = 1.5 × 10� �
â�� 

Number of atoms in 63 g = 6.02 × 1023 (Avogadro number) 

Thus, the number of atoms in 9 g (number of atoms per cc),  

N = 
�.
� ×�
��×8 

�:  
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Drift velocity, vd = 
e� � = 10.9 × 10-5 ms-1 

 
8: Electric field 

� =  �¹ = � h =  i�  h 

= 5.0 × 1.7 × 10?� = 8.5 × 10?� ���k/µ� 
Potential difference,  V = E l = 8.5 × 10-6× 105 = 0.85 volt 
9: Conductivity 

¹ =  �� =  �� �⁄ =  6.65 × 10�
1.3 1.3⁄  

                                                       = 6.65 × 105 (ohm-m)-1 

10: The conductivity  
         ¹ =  o þ� N

2 � = 5.88 ×  10�9Ω − m;?� 
Terminal Questions: 

2. 1.5×10-4 m/s, 0.0344 volt, 7. 08 volt 

3. 2×10-10 A/m2. 

5. 0.88 A. 

6. 2.287 volt/m, 2.287 volt 

Objective Type Questions: 

1. d.  2. d.   3. b.  4.c.  5. a.  6. a. 
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13.1INTRODUCTION 
Alternating current is produced by a voltage source whose terminals polarity keeps alternating 
with time.As a result of constantly reversing polarity of voltage source, the direction of current 
flow in the circuit also keeps reversing. It is obvious that an alternating voltage source will cause 
an alternating current in the circuit.In short alternating current is denoted by AC. On the other 
hand a voltage source, whose polarity remains constant with time, is called DC source and the 
current produced by this source is called direct current. AC voltage or AC current is sometimes 
called sinusoidal voltage and sinusoidal current. 

 

                                                               Figure 1 
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13.2 OBJECTIVE 

The purpose of this chapter is to study the behavior of alternating current in different electronic 
components (resistor, inductor and capacitor). We shall discuss resistance produced by every 
component called resistance, inductive reactance and capacitive reactance respectively. We shall 
also discuss the net resistance produced by the combinations of these components called 
impedance.  

13.3 WHAT IS ALTERNATING CURRENT?  

Alternating current (AC) is an electric current which periodically reverses direction. 

13.3.1 Cycle 

One complete set of positive and negative values of an alternating quantity is known as a cycle. 
A cycle is sometimes specified in terms of angular measure, one complete cycle equal to 2π 
radians. 

Time period-It is the time taken by alternating voltage or current to complete one cycle. 

13.3.2 Frequency 
The number of cycles per second made by alternating voltage or current is called its frequency. 
Instantaneous value- It is the value of current that exists at any instant of time measured from 
one reference point, mathematically it is given by i = i�±²³ �k 
13.3.3 Peak value or maximum value 
It is the highest valuereached by the current in one cycle. This peak value of current is also called 
amplitude of the current. 
Peak to peak value- this is the positive peak and negative peak values usually written as p-p 
value. 

13.3.4 Root mean square value 
It is also called the effective value. The value of alternating voltage which we read by an 
instrument is the r.m.s. value of voltage, actually peak value =√2×r.m.s. value. 

13.3.5  Average value 
It is the arithmetic average of all instantaneous values in one half cycle of the wave. For a 
sinusoidal wave  

value average = 0.673 × � − � �§�zþ 

13.4 AC CIRCUIT HAVING PURE RESISTANCE ONLY 

When an alternating voltage is applied across a pure ohmic resistance it produces an alternating 
current through the resistance. 

1. Which is in phase with the voltage  



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 248 

 

2. Whose r.m.s. value is given by i = �/È 

 
Figure 2 

If the expression of applied voltage is  

� =  ��±²³ �k    ………..(1) 

 then the equation of current is  

i = i�±²³ �k    ………..(2) 

Comparing equation (1) and (2) it is obvious that in a pure resistor the current is always in the 

same phase as the applied voltage which is graphically represented in Figure 2(b). The power 

dissipated in the circuit in the form of heat is i�È.  

13.5 AC CIRCUIT HAVING PURE CAPACITANCE ONLY 

When an alternating voltage � =  ��±²³ �k is applied across a pure capacitor it produces an 
alternating current through the circuit whose magnitude is given by  

i =  �{Ì 

 

 
Figure 3 

Where {Ì =  �+�  =  �
� �ú� called capacitive reactance. 
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For direct current (DC) 

| = 0, hence {Ì = ∞ 
The current through the circuit leads the applied voltage by 90oas shown in figure(3b) hence the 
equation of current is given by 
 i = i�±²³9�k + �/2; = i�µ�± �k 

 
Instantaneous power dissipation in this circuit is given by  � = �i  =  �� ±²³ �k i� µ�± �k 

 
=  ��i�±²³ �k µ�± �k 

 
Average power dissipated by this circuit is zero because 

< sin ωt cos ωt > = �
� < ±²³2�k > = 0.  

=> � = 0 

13.6 AC THROUGH PURE INDUCTANCE ONLY 

When an alternating voltage is applied across a pure inductive coil of inductance L it produces an 
alternating current through the circuit. As the current in the coil variescontinuously an opposite 

back voltage is set up in the coil whose magnitude is L 
�c
�å where I is instantaneous current. The 

net instantaneous voltage is  

VPsin ωt −  L Yi
Yk 

 
Figure 4 

 

Since there is no resistance in the circuit, hence instantaneous voltage should be zero. Thus 
VPsin ωt − L Yi

Yk = 0 
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VPsin ωt = L �c
�å                        …………….(3) 

Solving above equation  

I = − ���r cos ωt 
i = ���r sin 9 ωt − π/2; 

i = i� ±²³ k �k − �
�n                     ……………(4) 

wherei� = ��+� is the maximum current 

Comparing the above current equation with voltage equation it is clear that for a pure inductive 
circuit current lags behind the voltage by π/2 as shown in figure(4b). 

Instantaneous power dissipation in this circuit is given by  

� = �i  =  � �±²³ �k i� µ�± �k 
 � = ��i�±²³ �k µ�± �k                         …….(5) 

 

Average power dissipated by this circuit is zero because 

sin ωt cos ωt = 1
2 sin 2ωt < sin 2ωt > = 0 

=> � = 0 

In the expression IP = ��+� , ωL has the dimension of resistance and it is called inductive reactance 

and denoted by XL 

thus     {� = �r = 2�|r,  

when f is in Hertz and L is in Henry then XL is in ohm. 

 

13.7 AC THROUGH L-R CIRCUIT 

 

When an alternating voltage is applied across a pure inductive coil of inductance L, in series with 
a resistor R, it produces an alternating current through the circuit. The potential difference arises 
across L and R is VL and VR respectively. 
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Suppose the solution of the above equation is

 

 
where Io is the peak value of the current and 
Differentiating equation (7) w.r.t. time, we get

 

substituting this diff. coff. in above equation (

Èi� ±²³ 

Èi� ±²³ 9 �k −  �; + ri� �µ�±
comparing coefficients both side

squaring and adding equ. (8) & (9

dividing equ. (9) by (8) 

                                                                                                             ELECTRICITY AND MAGNETISM

Figure 5 

 

VPsin ωt = RI + r �c
�å                         

Suppose the solution of the above equation is 

i = i� ±²³ 9�k − �;                       

is the peak value of the current and ϕ is the phase angle to be determined.
Differentiating equation (7) w.r.t. time, we get 

Yi/Yk = i� �µ�± 9�k − �; 
substituting this diff. coff. in above equation (6) 

 9�k − �; + ri� �µ�± 9�k − �;  =  ��±²³ �k
= ��±²³ A9�k − �; + �} 

�µ�± 9�k − �;  =  ��A±²³ 9�k − �;µ�± � −  
comparing coefficients both side 

Èi� =  ��µ�± �                           
ri� � =

(8) & (9) 

9r��� +  È�;i�� =  ��� 

IP = ��
�9����z ��;                                    

ELECTRICITY AND MAGNETISM 

Page 251 

 

                         ……………(6) 

                       …..……….(7) 

is the phase angle to be determined. 

�k 
 µ�± 9�k − �;±²³ �} 
                 ………….(8) 

=  �� ±²³ �…………(9) 

                                    ………….(10) 
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tanϕ = +�
¢                                        ..............(11) 

substituting the value of Io in equation (7) 

I =
��

�9����z ��; sin (ωt - ϕ)                 .………(12) 

this is the instantaneous value of current in the circuit and 
��

�9����z ��; is its amplitude. The 

impedance of the circuit is defined as 

Z = ��c� = �9L�ω� +  R�;                  …………(13) 

13.8 AC THROUGH R-C CIRCUIT 
 

When an alternating voltage is applied across a capacitor of capacitance C in series with a 
resistor R, it produces an alternating current through the circuit. The potential difference arises 
across C and R is VC and VR respectively. 

 

Figure 6 

Let q be the charge on the capacitor at any instant and I the current in circuit at that instant. The 
potential difference across the capacitor at this instant is q/C. The effective potential difference 
in the circuit is  

��±²³ �k − �� 
which must be equal to RI. 

or      Èi + �/� =  ��±²³ �k 
differentiating w.r.t. t, we get 

È Yi
Yk  + 1� Y�

Yk = VPω cos ωt   
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�zk Y�
Yk = i 
henceÈ �c 

�å  + 
c
� = VPω cos ωt   …………..(14) 

 

The current in circuit varies harmonically with same frequency as the applied alternative 
potential difference but differing in amplitude and phase.  Hence we may assume the solution of 
equ.(14) as  

 i = i�±²³ 9�k − �;……….(15) 

differentiating equ. (15) w.r.t. t 

Yi
Yk = IP ω cos 9ωt − ϕ; 

 

substituting the value of  I and dI/dt in equ (14) 

R Io ω cos (ωt-ϕ) + 
RP
� sin 9ωt − ϕ; = VPω cos ωt   

= VPω cos °9ωt − ϕ; + ϕ¶ 
=VPω °cos 9ωt − ϕ;cosϕ − sin 9ωt − ϕ;sinϕ¶ 

comparing the coefficients of sin and cos functions both side 

 IPRω = VPω cosϕ………….(16) 
 R%

S = −VPω sinϕ                            .…………(17) 

 

squaring and adding equ (16) and (17) 

 IP� kR�ω� + �
S�n=VP��� 

 IP� kR� + ���S�n=VP� 

 IP = �%
���z �����

                                    ..…………(18) 
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dividing equ.(iv) by equ.(iii) 

tanϕ = − 1RωC 

 

substituting the value of Io in equation (15) 

I = VP
�R� + 1ω�C�

sin9�k − �; 

 

where ϕ =  tan?� k− �
¢+�n, which indicates that phase angle ϕ is negative. Hence the proper 

way of writing the expression for current is 

I = �%
���z �����

sin9�k + �;………….(19) 

This is the equation of current in circuit at any instant. WhereIP = �%
���z �����

 is the amplitude of 

the current, 
�+� is capacitive reactance of capacitor and denoted by XC. The quantity �R� + ���S� 

is impedance ‘Z’ of the circuit. Thus Z = �R� + XS�. Thus it is clear from equation (19) that the 

current leads the applied potential (emf) by an angle ϕ = tan?� k��¢ n 

Since a pure capacitor consumes no power, the entire power consumption is due to resistor only 

 P = I�È = �i cos� 

Vector diagram:  

Let Vc and VR are the magnitude of potential differences across C and R respectively. Then we 
have  

�� = i{� §³Y �¢ = iÈ 
Since VR is in phase with current while VC is lags behind I by an angle π/2. These quantities can 
be represented by a Vector diagram as shown in figure 6(b). 

V� =�¢� + ��� 
 �zk    � = i� 
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thus  

I�Z� = I�R�  + I�XS� 
 Z� =R�  + XS� 
 

Z = �R�  + XS� 

tanϕ = VSV� = 1ωCR 

 

where ϕ is the angle by which current in the circuit leads the applied potential difference. 

13.9 AC THROUGH  L-C CIRCUIT 

when an alternating voltage, � =  �� ±²³ �k , is applied across a series LC circuit then the 
potential difference across the capacitor at an instant is �/�  and potential difference across 
inductor is r9Yi/Yk; both are opposite in phase. Since there is no resistance in the circuit hence 
the effective potential in the circuit is 

 
Figure 7 

 

�� sin�k = �� + r Yi
Yk 

differentiating w.r.t. t, we get 

r Y�i
Yk� + 1 Y�� Yk = ��ωcos�k 

 

but
�J
 �å = i 

 



BSCPCH102                                                                                                               ELECTRICITY AND MAGNETISM 

 Page 256 

 

hence r ��c
�å� + c

� = ��ωcos�k..……….(20) 

 

let the solution of above equation  in the form  

 i = i� sin9�k − �;……….(21) 
 

where Io and ϕ are constants to be determined. Differentiating equation (21) twice we get 

Y�i
Yk� = −i�ω�sin9�k − �; 

 

putting this value in equation (20) 

 

−ri�ω�sin9�k − �; + i�� sin9�k − �; = ��ωcos�k 
= ��ωcos°9�k − �; + �¶ 

= ��ω°cos9�k − �; cos� − sin 9�k − �; sin�¶ 
 

This equation should be true for all values of t. hence the coefficients of sin 9�k − �; and 
cos 9�k − �; functions of both sides must be equal  

 

−ri�ω� +  c�� = −��ω sin�………….(22) 

 
0 = ��ω cos�                                …...……..(23) 

 

squaring and adding equ.(22) and (23) 

k−ri�ω� + c�
� n�

=9 ��ω;� 

ri�� − i��� =  �� 

 

 i� =  ���� ? ���                                        ………….(24) 

dividing equ (22) by equ (23) 
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tanϕ = ∞ 
 

or ϕ =  �
�                                      …………(25) 

substituting the value of  i�§³Y � in equation (ii) we get 

i = �  ��rω − 1�ω� sin k�k − �
2n 

 i = k  ����?��n sin k�k − �
�n                            ……........(26) 

 

where XL is inductive reactance and XC capacitive reactance.  

This is the equation of instantaneous current in circuit which is exactly lagging behind by a 

factor 
�
� with applied alternating potential or emf, and the current I will be infinite when {� = {� 

 

orrω − �
�� = 0 

 

ω� = 1LC 

ω = 1
√LC  

 

2πf = 1
√LC  

 

f = �
��√�S                           ……….(27) 

This expression represents the natural frequency of the circuit. Hence the amplitude of the 
current in the circuit is infinite (maximum) when frequency of the applied alternative potential 
(emf) is exactly equal to the natural frequency of the circuit. This condition is called resonance. 

 

13.10  AC THROUGHL-C-R CIRCUIT 

When an alternating voltage,� = �� ±²³ �k , is applied across a series LCR circuit then the 

potential difference across the capacitor is �/�  and potential difference across inductor is 
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r9Yi/Yk; both are opposite to the applied voltage. The effective voltage at that instant is 

therefore  �� ±²³ �k  −  �/� −  rYi/Yk 
which must be equal to IR �� ±²³ �k −  �/� −  rYi/Yk  =  iÈ 

 
or �� ±²³ �k =  iÈ +  �/� +  rYi/Yk 

 

  rYi/Yk + iÈ +  �/�  = �� ±²³ �k 
 

differentiating w.r.t. to t 

Ld�I/dt� + RdI/dt + 1� dq/dt = VP ωcos ωt 
but Y�/Yk =  i 

�B�R
Bî� + RdI/dt + c

� = VPωcos ωt  ……….(28) 

In the steady state the current alternates with same frequency as the applied voltage but may 
differ in amplitude and phase. The solution of the above equation in steady state will be in the 
form  

 i = i� ±²³ 9�k − �;                                ………(29) 

Yi
Yk = i��µ�± 9�k − �; 

Y�i/Yk�  =  −i���±²³ 9�k − �; 
−ri���±²³ 9�k − �; + Èi��µ�± 9�k − �; + i�/� ±²³ 9�k − �; =  �� �µ�± �k 
�−r�� + 1�� i� ±²³ 9�k − �; + Èi��µ�± 9�k − �; =  �� �µ�±°9 �k − �; + �¶ 

= �� �°µ�±9 �k − �;µ�±� − ±²³9 �k − �;±²³�¶ 
comparing the coefficients of ±²³ 9�k − �;  and µ�± 9�k − �; both side 

9−r�� + 1/�;i� =  −�� � ±²³�              .……….(30) 

andÈi�� = �� � µ�±�   …………(31) 
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dividing equation (30) and (31) 

tanϕ=
���?�/S

� �  

=
��?�/�S

�   (
�
��î���

�
���î���
) 

squaring and adding (31) and (31) 

°9−r�� + 1/�;� + È���¶ i�� = �����  

orIP =  ��
�9�/ � S?��;� z �� 

substituting this value in equation (29) 

I = 
��

�9�/ � S?��;� z �� sin 9ωt − ϕ;…………..(32) 

whereϕ = tan?� k��?�/�S
� n 

This is the value of current at any instant. The amplitude of current is  

Io =  ��
�91/ ω C− Lω;�  +  R� 

Lω is inductive reactance and denoted by XL, 1/ωC is the resistance produced in the circuit due 
to capacitor called capacitive reactance and denoted by XC, hence the quantity 

�9 1ωC − Lω;�  +  R� = �9X� − XS;�  +  R� 

is called impedance of the circuit and represented by Z. The quantity 9X� − XS; is called the 
resultant reactance of the circuit which is the difference between inductive reactance and 
capacitive reactance. Thus  

� = �9X�~XS;�  +  R� 
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it is clear from equ.(32) that current lags in phase from applied voltage by an angle

depending on the values of XL

1. When X� > XS
applied voltage.

2. When X� < XS
3. When X� = XS

voltage. 

The last condition when 
R, is called electrical resonance. Hence amplitude of the current is maximum.
resonance XL=XC 
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Figure 8 

) that current lags in phase from applied voltage by an angle

�= tan?� �Lω − 1/ωCR � 

 

or �= tan?� kx�?x�
� n 

 

L and XC, following three cases are arises 

S , ϕ is positive so the net current in the circuit lags behind the 
applied voltage. 

S, ϕ is negative so the net current leads the appl

S , ϕ=0, and the current in the circuit is in phase with applied 

 
The last condition when X� = XS, the impedance of the circuit is becomes minimum Z= 
R, is called electrical resonance. Hence amplitude of the current is maximum.
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) that current lags in phase from applied voltage by an angle 

is positive so the net current in the circuit lags behind the 

is negative so the net current leads the applied voltage. 
=0, and the current in the circuit is in phase with applied 

 
, the impedance of the circuit is becomes minimum Z= 

R, is called electrical resonance. Hence amplitude of the current is maximum. Thus at 
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or  �r = �+� 

if f is the frequency of current in the circuit, then ω=2πf

where|
 is resonance
 

13.10.1 LCR series resonant circuit

A series LCR circuit has high inductive reactance at high frequency and high capacitive 
reactance at low frequency. In both cases impedance of the circuit is very high. At some 
particular frequency impedance becomes 
remains constant and frequency of applied voltage varies continuously from zero the current 
varies as shown in figure.  

                                                                                                             ELECTRICITY AND MAGNETISM

or � = �
√9��; 

if f is the frequency of current in the circuit, then ω=2πf 

2�| = 1
√9r�; 

| = �
��√9��; = |
                        

resonance frequency when reactance of  the circuit

LCR series resonant circuit 

Figure 10 

A series LCR circuit has high inductive reactance at high frequency and high capacitive 
reactance at low frequency. In both cases impedance of the circuit is very high. At some 
particular frequency impedance becomes minimum i.e.Z = R . If the values of R, L and C 
remains constant and frequency of applied voltage varies continuously from zero the current 
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                        ……….….(33) 

circuit is zero 

 

A series LCR circuit has high inductive reactance at high frequency and high capacitive 
reactance at low frequency. In both cases impedance of the circuit is very high. At some 

. If the values of R, L and C 
remains constant and frequency of applied voltage varies continuously from zero the current 
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Figure 11 

Initially current flows very slowly and increases to a maximum when the frequency increases to 
the resonance frequency then falls again. At resonance condition current in the circuit depends 
only on the value of R. In the figure three curves are plotted, for the values of resistance small, 
medium and large.The resonant current in the circuit is larger for the smaller values of resistance. 
The resonance is sharper for small value of resistance than for large resistance, however resonant 
frequency remains unchanged. 

 
This circuit is often called acceptor circuit because the impedance of the circuit is minimum at 
resonance so that it most readily accepts that current out of many currents whose frequency is 
equal to the natural frequency of the circuit. 

From figure we have seen that at resonant frequency the amplitude of oscillating system becomes 
maximum. If the frequency of applied voltage is increased or decreased the amplitude falls from 
maximum value. The term sharpness of resonance refers to the rate of fall of amplitude with the 
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change in the applied alternating source on either side of the resonant frequency. Sharpness of 
resonance is defined by Q factor, which is related to how quickly the energy of the oscillating 
system decays. 

±ℎ§Z�³þ±± �| Zþ±�³§³µþ = |� − |�|�  

13.10.2 Parallel resonant circuit  

When an alternating voltage is applied to a circuit having inductance L and resistance R in 
parallel with a capacitance C as shown in figure11. The peak value of the current in lower branch 
of the circuit is given by 

²� = ��
√9¢�z���;                          …………(34) 

the peak current in capacitance is given by 

²� = ���õ                         ………..(35) 

current i1 lags behind Vo by an angle ϕ and the current i2 leads Vo by 90o.The impedance if 
parallel circuit is given by  

� = ��²� 

 

Figure 13 

The parallel circuit is said to be in resonance when the current iois in phase with the applied 
voltage Vo, and the current in the circuit does not depend on the value of capacitance and 
inductance circuit behaves like a pure resistance. 

from the phase diagram for parallel circuit we can write 

²� =  ²� µ�± �                         …..……(36) 
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²� = ²� ±²³ �                         ………..(37) 

now since ²� = ��
√9¢�z���; ,    ²� = ���õ  §³Y     sin� = ��

√9¢�z���; 

substituting these values in equ.(37) 

��{Ì  = ��
√9È� + {��;

{�
√9È� + {��; 

or  {�{Ì = È� + {�� 

�r�� = È� + ��r� 

1r� = È�r� + �� 

�� = 1r� − È�r�  

| = �
�� � ��� − ¢���                           ……….(38) 

this is the resonant frequency of parallel LCR circuit. Now since frequency is a real quantity 
hence 

1r� > È�r�  

or  È� < �
� 

orÈ < ���                        ………………(39) 

this is the requirement for a parallel circuit to be resonant. When r is very small the value of 
¢�
��  is 

very less in comparison to 
��� the resonant frequency becomes 

| = 1
2�� 1r� 

which is same as for the series resonant circuit. 
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The impedance of the circuit is� = ��
��  

now²� =  ²� µ�± � 
 

²� = ��
√9È� + {��;  §³Y cos� = È

√9È� + {��; 

hence   
²� = ��

√9È� + {��;
È

√9È� + {��; 

²� = ��È
È� + {�� 

but È� + {�� = {�{Ì = +�+� = �
� 

hence ²� = ��¢��     ………..(40) 
and the impedance of the circuit is � = �

�¢    …………(41) 

Now it is clear that impedance of the circuit is very high for small value of resistance R when 
È = 0 no current will be drawn by the circuit from source. Thus at resonance, circuit rejects the 
current of same frequency as the natural frequency of the circuit. That is why this circuit is called 
rejecter or filter circuit. 

 

Figure 14 
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Figure 14 is the frequency response curve for a parallel LCR circuit. Graph shows that the 
response starts at its maximum value, reaches its minimum value at the resonance 

frequencywhen IMIN = IR and then increases again to maximum as ƒ becomes very high. 

13.10.3 Quality factor of a circuit 

Reactive components such as capacitors and inductors are often described with a figure of merit 
called Q (quality factor). While it can be defined in many ways 

The quality factor of an oscillating electric circuit is defined as 2π times the ratio of the energy 
stored to the energy loss (energy dissipated) per period. i.e. 

� = 2� �³þZ�e ±k�ZþY
�³þZ�e ��±± �þZ �þZ²�Y §k Zþ±�³§³µþ = 2� ���� 

Energy loss per period is directly related to the damping. Hence less is the damping higher is the 
quality factor. 

This definition does not specify what type of system is required. Thus, it is quite general. For a 
LCR series circuit energy stored in the circuit is  

�� = �
� ri� + �

�����………………..(42) 

for �� = � ±²³ �kthe current flowing in the circuit is 

i = � Y��Yk = ωCA cosωt 
The total energy stored in the reactive element is  

 

�� = �
� r������ cos��k + �

���� sin� �k………………(43) 
 

At the resonance frequency where � = �� = �
√��, the energy stored in the circuit stored becomes  

�� = 1
2 r 1r� ���� cos��k + 1

2��� sin��k 
 

�� = 1
2���9cos��k + sin��k; 

 

�� = �
����……………(44) 

the energy dissipated per period is equal to the average resistive power dissipated times the 
oscillation period T 
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�� = È < i� > q 

�� = È < i� >|  

�� = È < i� > 2��� = È ����
1
2�����2��� = 2� �1

2
È���r ��� 

�� = 2� k�
�

¢�+����n……….(45) 

with the help of equ. (44) and (45) putting the value of ES and ED in the definition of quality 
factor 

� = 2� ���� 

� = 2�
12���

2� k12 È���r ��n 

� = +��
¢ = �+�¢�                               …………..(46) 

It is obvious that quality factor increases with decreasing R. 

The selectivity or Q-factor for a parallel resonance circuit is generally defined as the ratio of the 
circulating branch currents to the supply current and is given as: 

� = ¢+�� = ��È�                                  ……….(47) 

 

13.11 THE IDEAL TRANSFORMER 

A transformer is an electrical device that transfers electrical energy between two or more circuits 
through electromagnetic induction. A device that changes AC electric power at one voltage level 
to AC electric power at another voltage level through the action of a magnetic field.  
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Figure 15 

The core type transformer shown in figure 15. It consists two highly inductive coils which are 
electrically separated and magnetically linked through an iron core. If one coil is connected to 
source of alternating voltage an alternating magnetic flux is set up in core, which is shown in 
figure by rectangular shaded part, and this flux is linked with the other coil. Hence an induced 
alternating voltage is produced in the second coil.If second coil is closed, the current flow in it 
and so electric energy is transferred from first coil to second coil. The first coil in which electric 
energy is fed is called primary coil and the other from which energy is drawn out is called 
secondary coil. 

An ideal transformer is a theoretical, linear transformer that is lossless and perfectly coupled; 
that is, there are no energy losses and flux is completely confined within the magnetic core. 
Perfect coupling implies infinitely high core magnetic permeability and winding inductances and 
zero net magnetomotive force. 

 
Assumptions 

1. Relative permeability of core material, �A = ∞ 
2. Total magnetic flux linked with primary coil should be linked with secondary coil, 

i.e. "lux loss = 0 
3. No core loss 
4. No winding loss 

 

13.11.1 Voltage relationship 

Whether voltage across secondary coil is more or less than voltage across primary coil depends 
on the turn ratio of the primary and secondary coils, i.e. 

�Á = oÁ �∅
�å  and �� = o� �∅

�å 

�Á�� = oÁo� = ³, µ§��þY kZ§³±|�Z�§k²�³ Z§k²� 
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13.11.2 Current relationship 

If relative permeability of the transformer core �A = ∞ then the resistance of the core material 
ÈÌ�A� = 0 

²ÁoÁ = ²�o� 

²Á²� = o�oÁ = 1
³ 

It is obvious from above relations that a transformer which is step up for voltage is step down for 
current. If voltage is increased by ‘n’ times current reduces by a factor 1/n, because output power 
is equal to the input power for ideal transformer.It means that current ratio isreciprocal of voltage 
ratio. 

13.11.3 Impedance relationship 

Every transformer winding has its own resistance, inductive reactance hence impedance  

 
Figure 16 

��ù = �Á²Á §³Y �L�¤� = ��²�  

hence  
�ó����ò� = ��

�]
�]
�� = k���]n

� = ³� 

13.11.4 Power relationship 

The ideal transformer does not generate, dissipate, or store energy. Therefore the instantaneous 
power leaving the transformer is the same as that entering. This could be said in other words by 
saying that if one were to draw a box around an ideal transformer and sum the power flows into 
(or out of) the box, the answer is zero at every moment in time. �Á = �Á²Á,�� = ��²� 
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hence    
\�
\] = ��

�]
��
�] = 1 

13.12 SUMMARY 

In this chapter we studied the nature of alternating current in different electronic components 
(resistor, inductor and capacitor) and in their combinational circuits(LR, RC, LC and LCR). The 
relation between current and alternating potential shows that current is not always in phase with 
applied potential difference. Sometimes phase angle is positive and sometimes negative. The 
current in LCR series circuit is maximum when the natural frequency of the circuit is equal to the 
frequency of AC source and this condition is called resonance. While in parallel LCR circuit 
current is minimum at resonance. Hence the series LCR circuit is called acceptor circuit and 
parallel circuit is called rejecter circuit.  

13.13 GLOSSARY 

1. Impedance:net resistance produced by all the components in circuit 
2. Inductive reactance: resistance produced by induction coil 
3. Capacitive reactance: resistance produced by capacitor 
4. Resonance: the condition when maximum current flows in the circuit 
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