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BSCPCH102 ELECTRICITY AND MAGNETISM

1.1 INTRODUCTION

Dear learners, in lower classes, you have seen that when we rub two bodies together, the both
bodies begin to attract light bodies like cotton, straws, and feathers of birds or small pieces of
paper. Such experienceswere studied byancient Unani philosopher Thales about 2500 years back.
When he rubbed amber with woolen cloth, amber acquires the property of attracting light bodies.
When a glass rod is rubbed with silk, it also acquires the same property of attracting light bodies.
When a body acquires such type of property, it is said to be electrified or the body is said to be
charged electrically. In Unani language amber is said to be electronand the energy due to which
amber acquires the property of attracting light bodies is called electricity. When we rub any solid
material with another material under suitable conditions, it gets charged electrically. The process
of acquiring charges by bodies when they are rubbed with each other is known as frictional
electrification.

It is found experimentally that there are of two types of charges- positive charge and negative
charge. In fact, when we rub two bodies with each other, there is a transfer of electrons from one
body to another. The body which loses its electrons becomes positive (positively charged) and
the body which gains electrons from first body becomes negative (negatively charged). Thus,
there are of two charges i.e. positive charge and negative charge. The magnitude of charges on
each body depends on the number of transferred electrons. The names positive and negative
charges were given by an American Scientist named Benjamin Franklin in 1750. The names of
positive and negative charges are purely conventional.

In this unit, the learners shall study thevarious properties of charges, experiment showing the
quantization of charge i.e. Millikan’s oil drop experiment, Coulomb’s law and its applications.

1.2 OBJECTIVES

After studying this unit, you should be able to-

e know about charges and their properties

e learn quantization of charge

e learn about Millikan’s oil drop experiment

e know about Coulomb’s law and their applications in daily life

e solve problems using the theory of Millikan’s oil drop experiment
e apply Coulomb’s law

1.3 PROPERTIES OF CHARGES

We know that charges have peculiar properties. Let us know about these properties of charges-

(a) Like charges repel and unlike charges attract.
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(b) A charged body attracts to uncharged (neutral) bodies due to electrostatic induction.

(c) Charge on a body remains unaffected by motion i.e. the charge on a body or particle
remains the same whether it is at rest or moving with any velocity.

(d) The electric chargeis additive. It means that the total charge on an extended body is the
algebraic sum of the charges located at different points in the body. If a body has positive
and negative charges both, then the net charge of the body is the algebraic sum of all the
charges i.e. Q = X q. A neutral body has equal amount of positive and negative charges so
that the charge on a neutral body is always zero.

(e) Charge is conserved i.e. it can neither be created nor destroyed but it may simply be
transferred from one body to another body.

(f) Charge is quantized i.e. any physically existing charge is an integral multiple of the
elementary charge (e).

Now, we shall discuss the properties of conservation of charge and quantization of charge in
detail.

1.3.1 Conservation of Charge

Charge can neither be created nor destroyed but it may simply be transferred from one body to
another body. This is known as conservation of charge or principle of conservation of charge.
The principle of conservation of charge may also be stated as “The net charge of an isolated
system remains constant.” Charge is conserved in every physical and chemical process.

1.3.2 Quantization of Charge

“Charge is created by transfer of electrons; therefore the net charge on a body is always an
integral multiple of magnitude of charge on an electron.”

We know that the charge on a body is produced due to excess or deficiency of electrons. Electron
cannot be divided into further smaller parts. Therefore, charge on a body is integral multiple of
the amount of charge on electron. This smallest amount of charge is 1.6x 10™'° coulomb and is
denoted by ‘e’. The magnitude of charge on an electron is called the fundamental charge or
elementary charge. Therefore, we can say that any physically existing charge is always an
integral multiple of fundamental charge ‘+e’ i.e. all existing charges are found to be ‘ne’ (where
n is a positive) such as e, 2¢, 3e,................ , =€, -2€,-3€,......u... Mathematically, we can write
q = £ ne, where ‘n’ is integer,n=1, 2, 3,......... and ‘e’ is a positive quantity equal to + 1.6x 10
' coulomb. ‘e’ is also known as the quantum of charge. No charge is found in the fraction of e
(as05eor0.7eo0r2.7e...... etc.). It means that electric charge cannot be divided indefinitely.
This property of charge is called ‘quantization’ or ‘atomicity’ of charge.

The charges of some natural elementary particles are as follows-

charge of electron: -e, charge of proton: +e, charge on a-particle: +2e
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The value of the elementary charge is so small that we do not experience the quantization of
charge in daily life. Millikan’s oil drop experiment and many other experiments confirm the
quantum nature of charge.

1.4 MILLIKAN’S OIL DROP EXPERIMENT

This is the experiment which confirms the quantum nature of charge. Let us discuss Millikan’s
oil drop experiment.

In 1909, Millikan performed a series of experiments to demonstrate the existence of elementary
charge. He used tiny oil drops while latter on plastic spheres of known mass were used instead of
oil drops.

The apparatus consists of two parallel metallic plates P; and P, connected to +ve and —ve
terminals of a battery through potential divider as shown in figure 1. The observations are taken
with the microscope; hence the spheres (plastic balls) are illuminated by intense light.

Py

E

-
.;
e
P+ + + +

\%

e
— [k f——

Figure 1

The plastic balls are charged by friction and are thrown between two plates through a tube by a
blower. At first, when the key is open, these spheres start falling due to force of gravity. Since
their masses are equal and an equal viscous force due to air acts on them, all spheres have the
same constant velocity called terminal velocity. Now, the key is closed, the plates P, and P, are
charged and an electric field between plates P; and P, is established. Now the charged spheres
experience two forces-
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1. Force of gravity
2. Electric force

If lower plate is connected to the +ve terminal of battery, the direction of electric field is upward
and therefore an electric force due to this field acts upward. Since the charge on the spheres is
different they experience different electric force.

We can adjust the electric potential by potential divider and establish equilibrium. Thus in the
condition of equilibrium, the two forces are equal in magnitude but opposite in direction.

If the mass of the sphere is ‘m’ and charge ‘q’, then we have-
qE = mg (1)

If the two plates P; and P, are separated by a distance d and the potential difference between
them is V, then electric field E = V/d

From equation (1), q V/d = mg
or q=mgd/V .e(2)
But mgd = constant, since the masses of all spheres are same

Therefore, q « % .....(3)

or qV = constant ceen(4)

Various potentials are applied to balance the spheres of different charge. If spheres have charges
Qls Q25 QBaevevvennnn , then corresponding potentials are Vi, V, V3, ...... , hence

QVI=ERVo=q3V3eeeoa = constant

Since = is proportional to charge q of the ball, the ratio i,i,i

multiple ratio. Obviously, the charge on each ball is integral multiple of minimum value. That

............ are in integral

minimum value of charge is electronic charge ‘e’.

Thus g= ne ....(5)
or % = n (an integer)
Thus Millikan’s oil drop experiment confirms the quantum nature of charge.

Example 1: A plastic piece rubbed with wool is found to have a negative charge of 5 x107
coulomb. Calculate the number of electrons transferred.

Solution: Given q= 5 x10” coulomb
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Using q = ne, we get-

Example 2: In Millikan’s oil drop experiment the charge on any three drops was found to be
1.6x107"°, 4.8x10™"° and 9.6x10™"° coulomb. What is the conclusion of these results?

Solution: The given charges on the drops are- q;= 1.6x10"coulomb, q, = 4.8x10™"° coulomb= 3x
1.6x1 O'l9c0ulomb, qs= 6x 1.6x1 0" coulomb

Obviously, the maximum common factor among the given charges is 1.6x10"°coulomb and this
is the minimum possible charge. Therefore, the elementary charge = 1.6x10"°coulomb.

Also, all given charges are integral multiples (i.e. 1 times, 3 times and 6 times) of elementary
charge. This confirms the quantum nature of charge. The conclusion of these results is that
elementary charge is 1.6x10"°coulomb and charge is quantized.

Self Assessment Question (SAQ) 1:Wool rubbed with a polythene piece is found to have a +ve
charge. State from which to which the transfer of electrons took place. Is there a transfer of mass
from wool to polythene or vice versa?

Self Assessment Question (SAQ) 2:A oil drop of mass 5 gm is hanging in equilibrium between
two charged plates as shown in figure. Calculate the magnitude and nature of charge on the drop.

50V Oil drop Py 10 cm
l <

+ + + + +
1.5 COULOMB’S LAW

You have read in the previous sections that two like charges repel each other and two unlike
charges attract each other. Thus, we can say that a force acts between two charges. This force is
known as ‘electric force’. The electric force between like charges is repulsive and that between
unlike charges is attractive.

In 1785, Coulomb, on the basis of experiments, stated a law regarding the force acting between
two charges. According to this law, “The force of attraction or repulsion between two point
charges is directly proportional to the product of the charges and inversely proportional to the
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square of distance between them. The direction of this force is along the line joining the two
charges”. This law is called Coulomb’s inverse square law.

a O O

— r

v

Figure 2
If two point charges q; and q, are separated by a distance r, then the force F acting between them
is given by-
q19
F « %

F =k )

Where, k is proportionality constant, whose value is given bym, if the charges are placed in
0

vacuum (or air). If the charges, distance and the force are measured in coulomb(C), meter (m)

and Newton(N) respectively, then ﬁ =9 x 10° N-m*/C?. The constant &, is read as epsilon zero
0

and called ‘permittivity of free space’. Its value is 8.85x 10™? C*/N-m”.

If ¢ = q2 =1 coulomb and r = 1 meter, then from equation (6), we get-
F=9x 10" 2 =9 x 10" Newton

Hence, 1 coulomb is that charge which, when placed at a distance of 1 meter from an equal and
similar charge in vacuum (or air), repels it with a force of 9 x 10° Newton.

If charges are placed in a medium like glass, wax, paper etc., then the force between the charges
is given by-

_ 1 a9z
Lo (D)

where ¢ is called the absolute permittivity of the material medium and is equal to Kgg i.e. € =
Ke), where K is a dimensionless constant known as the dielectric constant or relative permittivity
or specific inductive capacity of the material and the material is called dielectric.

We can write the equation (7) as-

_ 1 qi92
Pl (8)
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For all dielectrics the value of K is greater than 1. Obviously, we can see that if there is a
dielectric between the charges, then the electric force between the charges decreases. For metals
K is infinite and for water K= 81

In vector form, we can write —

Fo=—Ll 9%; ()

dre, 1’

AN .
where r is the unit vector along r

I'/\l 2A B I'/\21
«—0 Oo—
Fioqu q2k21
" r L
Figure 3

Let us consider two point charges q; and q, are placed at points A and B respectively and the
distance between them is r.

The force exerted on charge q; due to charge g, can be written as-

- 1 .
F, :4_‘11‘52 7 ....(10)
mE, T

(Since ry,” = %, the unit vector along B to A i. e. along position vector r75)

Similarly, the force exerted on charge q, due to charge q;can be written as-

= 1 q19; A

21 = — I
4’7[80 I‘Z

_LqiqZ -
prmr el B (1)

But r; = - 137, therefore equation (11) can be written as-

- 1 q192 -
F,y = —— r (12
21 4meg r3 12 ( )

Comparing equations (10) and (12) we get-

- —
Fio = —Fy
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It means that Coulomb’s force exerted on q; by q, is equal and opposite to the Coulomb’s force
exerted on q, by q; ; in accordance with Newton’s third law. Thus, Newton’s third law also holds
for electrical forces.

1.5.1 Conditions of Validity of Coulomb’s Law

In the previous section, you have seen that Coulomb’s law between two point charges is an
inverse square distance law. It holds only for point charges and spherical charges at sufficient
separation, assuming the charge to be concentrated at their centres, however, it may be applied to
extended objects provided the distance between them is much larger than their dimensions. Both
charges must be point charges i.e. the extension of charges should be much smaller than the
separation between the charges. The separation between the charges must be greater than nuclear
distance ( 10"° m) because for distances less than 10™° m, the nuclear attractive forces become
dominant over all other forces.

1.5.2 Importance of Coulomb’s Law

Dear learners, as you know that Coulomb’s law is true for point charges separated by from very
large distances to very small distances such as atomic distances (= 10"'m) and nuclear distances
(=~ 10" m). Therefore, it is not only gives us the force acting between charged bodies but also
helps in explaining the forces which bind electrons with nucleus in an atom, two or more atoms
in a molecule and many atoms or molecules in solids and liquids. In our daily life, we experience
many forces which are not gravitational but are electrical. The particles in the nucleus (protons
and neutrons) of an atom are bound together by a very strong attractive force named as the
nuclear force. This force neither depends upon whether a particle is charged or uncharged nor it
has any relation with the Coulomb’s law. But it does not mean that the protons in the nucleus do
not have Coulomb’s electrical repulsive force between them. The electrical repulsive force is
there, although it is negligible in comparison to the nuclear attractive force, and plays a vital role
inside the nucleus. If this force would not have been there, the heavy nuclei would not have been
radioactive and the heavy elements beyond uranium (which are unstable) would have been
stable.
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1.5.3 Comparison of Coulomb’s Force and Gravitational Force

In addition to Coulomb’s force, gravitational force also acts between two charged bodies. The
comparison between Coulomb’s force and Gravitational force is tabulated below-

S. No. Coulomb’s force Gravitational force

l. The Coulomb’s force (electrical | The gravitational force acting between two
force) between two charged bodies of | bodies of masses m; and m, at separation r
charges q; and q, at separation r is | is given as-
SIven a1S 914z F, 2% , where G is known as

= RECH)
ek r* Universal Gravitational Constant and G =
6.67 x 10" N-m*/Kg’

2. The Coulomb’s force may be | The gravitational force is always attractive.
attractive or repulsive in nature.

3. The Coulomb’s force (electrical | The gravitational force is independent of
force) depends upon the medium | medium between the masses.
between the charges.

4. The Coulomb’s force is much | The gravitational force is much weaker than
stronger. the Coulomb’s force.

Example 3: Calculate the Coulombian force between two protons when the distance between
them is 4 x 107" meter. Also give the nature of this force.

Solution: Given r = 4 x 107" meter

We know, the charge on proton = 1.6 x 10™° C (positive), therefore, q; =g =+ 1.6 x 10" C

Applying Coulomb’s law-

__1 9192
4mey 12

or F=9x 10’ x1.6 x 10""x1.6 x 10" /(4x10"°)

= 14.4 Newton ( repulsive)

Example 4:Show that the gravitational force is negligible in comparison to electric force in
hydrogen atom in which the electron and proton are about 5.3 x 10! metre apart.

Solution: The gravitational force between electron and proton is given by-

F:g:

r

Gmym,

=53x 10" mand G=6.67 x 10" N-m*/Kg’

, Here m;= mass of electron= 9.1x 107! Kg, m; = mass of proton = 1.6 x 1077 Kg, r
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6.67x10711x9.1x10731x1.6x10727
(5.3x10711)2

Therefore, Fy=

=3.69x10"' N
Now electric force F, = — 332
4ney T
Here == =9 x 10" N-m’/C*, g = 2 = 1.6 x10"7C
0

1.6x10719x1.6x1071°
(5.3x10~11)2

Therefore, Fe =9 x 107 =8.2x10°N

Obviously, gravitational force is negligible in comparison to electric force in hydrogen atom in
which the electron and proton are about 5.3 x 10! metre apart.

Example 5:A charge Q is divided into two parts such that they repel each other with a maximum
force when placed at a certain distance apart. Find the distribution of charge.

Solution: Let the two parts of charge Q be Q* and Q-Q’. The force between two parts is given as-

__1 '(e-0)

4meg r2

. dF .
For maximum value of F, o =0  (ris constant)

Therefore, : Q_iol =0
4neg T

or Q-2Q° =0

or Q*=0Q/2

Therefore, the charge Q should be divided into two equal parts.

Self Assessment Question (SAQ) 3:Two identical metallic spheres, having unequal opposite
charges are placed at a distance of 0.30 metre apart in air. After bringing them in contact with
each other, they are again placed at the same distance apart. Now the force of repulsion between
them is 0.183 N. Calculate the final charge on each of them.

Self Assessment Question (SAQ) 4:Two point charges +4Q and +Q are fixed at a distance r
apart. Where a third point charge q should be placed on the line joining the two charges so that it
is in equilibrium? In which condition the equilibrium will be stable and in which unstable?

Self Assessment Question (SAQ) 5:Calculate absolute permittivity of water if dielectric
constant of water is 81.
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Self Assessment Question (SAQ) 6:Two positively charged particles, each of mass 1.7x107%
Kg and carrying a charge of 1.6 x 10™° coulomb, are placed at a distance / apart. If each one
experiences a repulsive force equal to its weight, find /.

1.6 SUMMARY

In the present unit, you have studied about electric charge, how it was discovered and its
properties. You have studied that there is no effect of motion on the charge of a body i.e. the
charge on a body or particle remains the same whether it is at rest or moving with any velocity.
Charge is conserved i.e. it can neither be created nor destroyed but it may simply be transferred
from one body to another body. You have also studied about the quantization of charge i.e.
electric charge cannot be divided indefinitely. Millikan’s oil drop experiment has been discussed
which confirms the quantum nature of charge. You have also studied Coulomb’s law, its
conditions of validity and importance. According to Coulomb’s law, “The force of attraction or
repulsion between two point charges is directly proportional to the product of the charges and
inversely proportional to the square of distance between them. The direction of this force is along
the line joining the two charges”. This law is called Coulomb’s inverse square law.You have
studied that Coulomb’s law holds only for point charges and spherical charges at sufficient
separation, assuming the charge to be concentrated at their centres, however, it may be applied to
extended objects provided the distance between them is much larger than their dimensions. This
law is true for atomic and nuclear distances. You have studied the comparison between
Coulomb’s law and Gravitational force. It is clear that Coulomb’s law between two charged
bodies is much stronger than the Gravitational force acting between them. Many solved
examples are given in the unit to make the concepts clear. To check your progress, self
assessment questions (SAQs) are given place to place.

1.7 GLOSSARY

Transfer- shift, transmit

Conserved- preserved

Performed- carried out or completed an action or function
Demonstrate- show, display

Intense- concentrated, powerful

[luminate- light up

Viscous- thick, sticky

Vacuum- void, vacuity
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Dielectric- that does not conduct electricity, insulating

Validity- legality, legitimacy

1.8 TERMINAL QUESTIONS

1

2.

\O

. Explain quantization of charge. Hence define elementary charge.

How many electrons must be removed from a piece of metal to give it + 1 x10” C of charge?
. State and explain the principle of conservation of charge.

. Discuss Millikan’s oil drop experiment to verify the quantum nature of electric charge.

. In Millikan’s experiment, an oil drop of radius 10™* cm remains suspended between the plates
which are 1 cm apart. If the drop has a charge of 5e over it, calculate the potential difference
between the plates. The density of oil may be taken as 1.5 g/cc.

. State Coulomb’s law in electrostatics. Mention two similarities and two dissimilarities
between electrostatic and gravitational interactions.

. Does Coulomb’s law of electric force obey Newton’s third law of motion?
. Give the importance of Coulomb’s law.

. Give comparison of Coulomb’s force and Gravitational force.

1.9 ANSWERS

S

1.

elf Assessment Questions (SAQs):

When two neutral bodies are rubbed together, electrons of one body are transferred to the
other. The body which gains electrons is negatively charged and the body which loses
electrons is positively charged. When wool is rubbed with a piece of polythene, the wool
becomes positively charged and polythene becomes negatively charged. It means that
electrons are transferred from wool to polythene.

As we know that electrons have finite mass, therefore mass is transferred from wool to
polythene.

The transferred mass = number of electrons transferredx mass of one electron

Given mass of dropm = 5 gm = 5x10~ Kg, d= 10 cm=0.10 m, V = 50 Volt

and g = 9.8 m/sec’
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qE A
SOI’ E 1 10 cm

v

+ 4+ ++ + +

The electric field between the plates E = % = % = 500 volt/m (vertically upward from

positive plate to negative plate)
Weight of the drop W = mg = 5x10~ x 9.8 = 49 x 10~ Newton (vertically downward)
Electric force acting on the drop F = qE = q x 500 Newton

For the equilibrium, the two forces i.e. weight of drop and electric force acting on the drop
should be equal and opposite in direction. The weight of the drop will act vertically
downward, therefore the electric force on drop should act vertically upward. Therefore, F = W

or q x 500 =49 x 10~ or q =49 x 10°/500 = 0.000098 coulomb (Positive charge)

3. When identical metallic spheres are brought in contact, then after separation they carry equal

charges.

Let Q be the charge on each sphere, then force of repulsion between them will be-
1 QxQ
N 4mgy T2

Here F=0.183 N, r = 0.30 metre, ﬁ =9x 10° N-m¥C2
0

QZ

Therefore, 0.183 =9 x 10° x
(0.30)2

or Q*=183x10"
or Q=v183x 10~ =13.527 x107 = 1.35 x 10 Coulomb = 1.35 uC
4. Let the third point charge q is placed between the charges + 4Q and + Q at a distance x from
+4Q.
The distance of third charge from + Q = r-x
Let third point charge q be positive.

+4Q F, +q F, +Q

. e 310 o
T <+ >
N Y=y > >
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The electric force on the charge +q due to the charge +4Q is-

1 4QXxq .
F, = pE— (repulsive)
Similarly, the electric force on the charge +q due to the +Q is-
F,= L oxa (repulsive)

ameo (r—x)2
For the equilibrium of charge +q, the above two forces should be equal and opposite.
Therefore, Fi=F,

1 49xq _ 1 Qxq
4mey X2 4meg (r—x)2
or 4(r-x)* = x*
or 2(r-x) = £x
or x =2r/3 or 2r

Only x= 2r/3 is possible because the charge + q is in between +4Q and +Q. Hence, for
equilibrium, the charge +q will be placed at a distance 21/3 from the charge + 4Q in between
the two charges. If you displace the charge +q slightly from its equilibrium position(suppose
towards right) then F; will decrease and F, will increase. Hence a net force (F, — F;) will act
on the charge +q towards left, due to which the charge will return to its equilibrium position.
Thus the equilibrium of the charge +q is stable.

Let third point charge q be negative.

+4Q Fi g F +Q
o —O— o
< r >
« )= > >

In this case, the force F; and F, will be of attraction and their directions will be according to
the adjoining diagram. The charge —q will still be in equilibrium. If you displace this charge
slightly towards right (say) then F; will decrease and F, will increase. Hence a net force (F, —
F; ) will act on the charge —q but now its direction will be towards right. Hence the charge
will go on moving towards right. Thus the equilibrium of the charge —q is unstable.

5. Given K = 81, g = 8.85x 10> C*/N-m’
e =Keo=81x8.85x 10" =7.16x10"? C*/N-m’

. 1
6. The repulsive force F = — QxQ
4mgy 12
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Here, Q =1.6 x 10" coulomb
Therefore, F =9 x 10”x 1.6 x 10719 x1.6x1077
9 lz
But F = mg= 1.7x10%"x9.8 = 1.66x10° N
—-19 -19
Therefore, 9 x 10°x 22218 X1~ 6610726

12
or 1=0.117 metre

Terminal Questions:
2. Given, q=+1x10"C
Using q=ne orn=gle = 1x107/1.6x10"" = 6.25x10"!
5.Givenr= 10" cm=10°m, d= 1 cm= 0.01 m, = 5e= 5x1.6x10™"° = 8x10™" C,
p=15glcc=1.5x10"/10°=1.5x10° Kg/m’
Volume of drop V = g T = §><3.14>< (10%° =4.18x10"% m?
Mass of drop m = densityx volume = pxV = 1.5x10°x4.18x10"® = 6.27x10"° Kg
For equilibrium, qE = mg
or qxV/d=mg or V=mgd/q=6.27x10""x9.8x0.01/(8x10™"?)
=768.075 volt

7. Yes
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UNIT 2 INTENSITY AND POTENTIAL, GAUSS’S
THEOREM, APPLICATIONS

Structure

2.1 Introduction
2.2 Objectives
2.3 Concept of Electric Field
2.4 Intensity of Electric Field
2.5 Electric Lines of Force
2.5.1 Properties of Electric Lines of Force
2.6 Calculation of Electric Field Intensity
2.6.1 Due to a Point-charge
2.6.2 Due to a System of Point Charges
2.6.3 Due to a Continuous Charge Distribution
2.6.4 Physical Significance of Electric Field
2.7 Electric Potential
2.7.1 Potential Difference
2.7.2 Physical Significance of Electric Potential
2.8 Electric Potential as Line Integral of Electric Field
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BSCPCH102 ELECTRICITY AND MAGNETISM

2.1 INTRODUCTION

In the previous unit, you have learnt about charges, their properties, quantization and
conservation of electric charge and Coulomb’s law. We know from our early studies that the
mutual interaction between charged bodies can be interpreted as due to the force which each
exert on the other, even though there is no material connection between them. This action at a
distance view was considered to be inconvenient and troublesome. Faraday in 19" century
introduced the so-called field concept to explain the mutual interactions between two charged
bodies. This concept was subsequently developed by Maxwell. In this unit, you will study and
learn about electric field, electric field intensity (strength) in different cases, electric potential
and its calculation in different cases. In the unit, you will also study electric flux, Gauss’s law
and the applications of Gauss’s law. The various concepts have been presented in a simple and
clear manner.

2.2 OBJECTIVES

After studying this unit, you should be able to-

e learn about electric field and electric potential

e learn about electric lines of force

e compute electric field intensity and electric potential in various cases

e understand electric flux

e understand Gauss’s law and its applications

e solve problems based on electric field, electric potential and Gauss’s law

2.3 CONCEPT OF ELECTRIC FIELD

Let us consider an electric charge q located in space. If you bring another charge qo near the
charge q, then the charge qy experiences a force of attraction or repulsion due to the charge q.
The force experienced by qp is said due to the electric field created by the charge q. Thus, “The
space surrounding an electric charge in which another charge experiences a force
(attractive or repulsive), is called the electric field of the electric charge”. We can say that*
The region in which a charge experiences a force is called the electric field”.

If a charge qp experiences a force in the space surrounding the charge q, then charge q is called
the ‘source charge’ and the charge qo is called the ‘test charge’. The source-charge may be a
point-charge, a group of point-charges or a continuous distribution of charges. Further, the test
charge must be vanishingly small so that it does not modify the electric field of the source
charge.
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2.4 INTENSITY OF ELECTRIC FIELD

In order to determine the intensity (strength) of electric field at a point in the electric field, let us
place an infinitesimal positive test charge q at that point. The force acting on this test charge is
measured and this force divided by the test charge gives electric field strength. The test charge is
assumed so small that it does not cause any change in initial electric field. Accordingly the
electric field strength (or intensity) is defined as follows-

“The intensity of electric field at a point in an electric field is the ratio of the force acting on
the test charge placed at that point to the magnitude of the test charge”. It is a vector
quantity and its direction is along the direction of force.

Thus, if F be the force acting on a test charge qo placed at a point in an electric field, then the

intensity of electric field E of the field at that point is given by-

E=

2 |

(D)

Here, we have assumed that test charge qo is infinitesimal, therefore the definition of intensity of
electric field may be expressed as-

E=lim£.....(2)

qo—0 qo

Force F is a vector quantity and test charge qo is a scalar quantity. Hence intensity of electric
ficldE will also be a vector quantity and its direction will be the same as the direction of the force
F i.c. the direction in which the positive charge placed in the electric field tends to move. If test

charge be negative, then the direction of electric field E will be opposite to the direction of the
force acting on the negative charge.

Obviously, the unit of intensity(strength) of electric field is Newton/metre.

If the intensity of electric field Eata point in an electric field be known, then we can determine

the force F acting on a charge q placed at that point by the following equation-
F=qE n(3)
2.5 ELECTRIC LINES OF FORCE

In the previous sections, we have studied that a charge placed in an electric field experiences an
electrostatic force. If the charge be free, then it will move in the direction of the force. If the
direction of the force continuously changes then the direction of motion of the charge also
continuously changes i.e. it moves along a curved path. The path of a free positive charge in an
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electric field is called ‘electric line of force’. Hence, “an electric line of force is that imaginary
smooth curve drawn in an electric field along which a free, isolated unit positive charge
moves. The tangent drawn at any point on the electric line of force gives the direction of the
force acting on a positive charge placed at that point”. We can represent an electric field by
lines of force.

Now we can define the intensity (strength) of electric field in terms of electric lines of force as
follows-

“The intensity of electric field at any point is defined as a vector quantity whose magnitude is
measured by the number of electric lines of force passing normally through per unit small area
around that point and whose direction is along the tangent on line of force drawn at that point”.

A/'/_/—\

Figure 1

Accordingly, nearer are the electric lines of force, stronger is the electric field and if farther are
the electric lines of force, weaker is the electric field. In the figure 1, the electric field strength at
A is greater than that at B.

2.5.1 Properties of Electric Lines of Force

(1)The electric lines of force appear to start from positive charge and to end on a negative
charge. If there is a single charge, they may start or end at infinity.

(a) (b)
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(©)

Figure 2

(i1) The tangent drawn at any point on the line of force gives the direction of the force acting on a
positive charge at that point.

(111) No two electric lines of forces can intersect each other because if they do so, then two
tangents can be drawn at the point of intersection which would mean two directions of
electric field intensity at one point which is impossible. In figure 3, two directions of electric
field at point of intersection P have been shown which is not possible.

1P E /

Figure 3
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(iv) The electric lines of force do not pass through a conductor because electric field inside a
conductor is zero.

(v) The equidistant electric lines of force represent uniform electric field while electric lines of
forces at different separations represent non-uniform electric field. The relative closeness of
lines of force in different regions of space expresses the relative strength of the electric field
in different regions. In regions, where lines of force are closer, the electric field is stronger
whereas in regions where lines of force are farther apart, the field is weaker.

v

»ld
Ll
v

v

Figure 4

(vi) The electric lines of force have a tendency to contract in length like a stretched elastic string
and separate from each other laterally. The reason is that opposite charges attract and similar
charges repel.

(vii) The electric lines of force are always in the form of open curves, they do not form closed
loops.

(viii) The electric lines of force are imaginary but the electric field they represent is real.

2.6 CALCULATION OF ELECTRIC FIELD INTENSITY

In this section, we shall calculate electric field intensity in various cases viz. due to a point
charge, due to a system of point charges and due to a continuous charge distribution.
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2.6.1 Due to a Point-charge

Let us consider an isolated point charge +q coulomb placed at a point M in air (or vacuum). In
the electric field produced by the charge +q there is a point P, distant r meter from M, at which
the intensity of electric field is to be calculated.

o -0 ——
M

Figure 5

Let us assume that a test charge qo is placed at the point P. According to Coulomb’s law, the
1 qqo
F=—3%

T 2 Newton
0

electric force acting on qp,

The intensity of electric field at point P, E ==

do

- LN/ (along direction from P to A) .....(4)

4meg 12

If the system is placed in a medium of dielectric constant K, then

_ 1 . q L
E= pE—— N/C (along direction from P to A) )
- 1 q .
In vector form, E = =7 ....(6)
drg, r

Where r is a unit vector pointing from the source charge towards the test charge.

Equation (6) can be written as-
E=—23¢% (since rAZE) )

If the source charge at M is —q, then the direction of the electric field E at point P would have
been along PM (i.e. towards the charge —q).
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2.6.2 Due to a System of Point Charges

If there are n point charges qi, q2, Q3yeevevveeeenee qn then each of them will produce the same
intensity at any point which it would have produced in the absence of other point charge. Hence

the intensity of the field Eata point P due to all the n charges will be equal to the vector sum of

the intensities El,Ez, E3 <eveere.....produced by the separate charges as P-
orE=——y 4z (8
dre, T'r;

Where 1; is the distance of P from the charge q;.

2.6.3 Due to a Continuous Charge Distribution

If there is a continuous distribution of charge, then the summation in the above expression will
be replaced by integration.

If the charge is distributed on a line, then electric field intensity at a point P is-

1 ¢Adl.
—

E= 7 ... (9)

dre, s r

Where A is the linear charge density ( or charge per unit length) and dl is the length of small
element.

If the charge is distributed on a surface, then the electric field intensity at a point P is —

1 odsS .
[ 7 (10)

Where r is the distance of the point P from a surface element dS and o is the surface charge
density (i.e. charge per unit surface area)

Similarly, if the charge is distributed in a volume, then

2
r

ot jpde (1)
Where p is the volume charge density i.e. charge per unit volume.

2.6.4 Physical Significance of Electric Field

The electric field is a vector quantity which may vary from point to point in magnitude and
direction. The magnitude of electric field at any point is a measure of electric force on a unit
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positive test charge, assuming that the test charge does not perturb the field of the system and its
direction is that of electrostatic force on the test charge. This implies that the electric field is the
characteristic of the charges of system and is independent of the test charge. The test charge is
simply introduced for measurement of electric field in a suitable manner.

The true physical significance of electric field appears only when we keep in view that
electrostatic interaction is only a part of general fundamental force known as electromagnetic
interaction. When two charges q; and q, are in accelerated motion, then either accelerated charge
(say q;) produces electromagnetic wave which propagates with speed of light; reaches on another
charge (say q») and causes a force on it.

Thus, the force between two distant charges is not instantaneous but appears with a time delay.
Thus electric field (as well as magnetic field) is detected by their interaction forces; but they are
not simply mathematical terms but are regarded as physical quantities which may be measured
by the forces exerted by them on single charges or diploes.

2.7 ELECTRIC POTENTIAL
The electric field produced by a charge can be described in two ways-

(1) by the intensity of electric field Eata point in the field and
(i1) by the electric potential V

The intensity of electric field E is a vector quantity while electric potential V is scalar. Both these
quantities are inter-related. In the study of electric field, the electric potential is an extremely
important quantity. Both of them are the characteristic properties of a point in the field.

We know that in an electric field, a free positive charge tends to move along the direction of the
electric field. When a positive test charge is brought opposite to the direction of electric field,
work is done against the Coulomb’s force of repulsion. To define absolute potential at any point,
the potential at infinity is assumed to be zero.

“The electric potential at any point in an electric field is defined as the work done by
external force in carrying unit positive test charge from infinity to that point, without any
acceleration”.

Let W is the work done in bringing positive test charge qo from infinity to any point in electric
field, then electric potential at that point is-

W
V== . (12)

The electric potential is a scalar quantity. Its S.I. unit is Joule/Coulomb. It’s another unit is volt.

If qo =1 coulomb, W= 1 Joule, then
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1Joule
1 Coulomb

=1 volt

1.e. 1 volt is the electric potential at a point in an electric field if the work done in bringing one
coulomb of electric charge from infinity to that point is 1 joule, provided the charge of 1
coulomb does not affect the original electric field.

2.7.1 Potential Difference

Let us define electric potential difference between two points in an electric field. “The ratio of
work done by external force in carrying a positive test charge from one point to another in
an electric field is called the potential difference between those points”.

v

ey
v

v

v

Figure 6

If Wga 1s the amount of work done in moving the test charge qo from B to A against the
direction of electric field , then the potential difference between points A and B is given by-

VA_VB:V‘;iA n(13)

or simplyAVZVEv .....(14)

Both the work Wy, and the charge qq are scalars, therefore potential difference V, — Vg will also
be a scalar quantity. If in carrying a positive test charge from the point B to the point A, work is
done by an external agent against the electric force, then the potential of point A is said to be
higher than the potential of point B. In figure 6, the electric potential of point A is higher than the
potential of point B. This also means that in an electric field a free positive charge moves from a
region of higher potential to a region of lower potential. Conversely, a free negative charge
moves from lower potential to higher potential.

If source charge (charge producing the electric field) is —q, then in taking the positive test charge
qo from point B to point A work would have been done by the electric force itself. In that case
the electric potential of the point A would have been lower than the potential of the point B.
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The unit of work done Wg, is Joule and the unit of charge qo is coulomb. Therefore, the unit of
potential difference is Joule/Coulomb.

Now we can define 1 volt potential difference. If Wga= 1 Joule, qo = 1 Coulomb then

1Joule

VA—VB= =1 volt

1 Coulomb

1.e. if 1 joule of work is done in carrying a test charge of 1 Coulomb from one point to the other
in an electric field, then the potential difference between those points will be 1 volt.

2.7.2 Physical Significance of Electric Potential

Positive charge always flows from higher potential to lower potential just as a liquid always
flows from higher pressure ( or higher level) to lower pressure ( or lower level) or heat always
flows from higher temperature to lower temperature. There is no relation of direction of flow of
charge with the quantity of charge as in the case of liquid flow or heat flow. Thus, the electric
potential is that physical quantity which determines the direction of flow of positive charge.
When we put two conducting bodies of unequal potentials in contact, the charge continues to
flow from one body to another until their potentials become equal. The positive charge always
flows from higher potential to lower potential, while negative charge always flows from lower to
higher potential. When two conductors are kept in contact, the electrons flow from lower
potential to higher potential until their potentials become equal.

Example 1: Compute the electric field intensity at a point 20 cm away in vacuum from an
electric charge of 4x10™ C.

Solution: Given r =20 cm= 0.20 m, g= 4x10° C
The intensity of electric field E is given as-

4meg r2
-9
=9x109x‘z:;‘;)2 = 900N/C

Example 2: An electron covers a distance of 60 mm when accelerated from rest by an electric
field of intensity 2x10* N/C. Calculate the time of travel. (The mass of electron= 9x107' Kg,
Charge on electron = 1.6x10™" C respectively.

Solution: Given s= 60 mm= 0.06 m, E = 2x10* N/C, m= 9x10>' Kg, = 1.6x10"° C
Electric force on electron F = qE = 1.6x10"°x2x10* =3.2x10"° N

. . F _ 32x1071°
Acceleration experienced by electron a = —= 2 =3.5%10" m/sec?

. . . 1 2
Now, using second equation of motion s = ut +at
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0.06 = 0xt +§ x3.5%10" x {2

or 0.06 =§ x3.5x10' x 2

or 2 =0.03 x10™"° = 0.3x107"°
ort=0.54x10" sec

Example 3: Two point charges of 5x 10" C and 20x10™"° C are separated by a distance 1 meter.
At which point on the line joining them, the electric field is zero? If a charge 12x10™"° C is
placed at this point then what will be the force acting on it?

Solution: Let the two charges are placed at point P and point Q and the electric field at a point O
between them is zero. Let the distance of point O from point P is x meter then the distance of O
from point Q will be (1-x) meter.

P.‘ < iOQﬁ‘ ()
5x10™" CE>E;20x10™
< X meter” (I-x) meter >
The electric field at point O due to charge at P, E;= 4;0 %
= 9x10° xZ2~ (along PO )

20x1071°
(1-x)2

Similarly, the electric field at point O due to charge at Q, E; = 9% 10° x (along QO)

Obviously, both electric fields are oppositely directed. If the resultant electric field at O is zero,
then E] = E2

9 _5%x10719 9 20x1071°
9%x10” % " =9x10" x ()2
4x* = (1-x)*

or 2x = +(1-x)
or 2x = (1-x) or —(1-x)
or x = 1/3 meter or x = -1 meter

x =-1 meter is not possible because the point O is between point P and point Q . Therefore x =
1/3 meter is the distance of point O from point P where the resultant electric field will be zero.
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Since at point O, resultant electric field E = 0, therefore force on charge 12x10™"° C at point O is-
F=qE=12x10""%x0=0
i.e. the net force acting on the charge 12x10™"? C at point O is zero.

Example 4: If 40 Joule work is done in bringing a charge 4x10"° C from infinity to a point in
electric field, what is the potential at that point?

Solution: Given W = 40 Joule, q = 4x10"°C

Example 5: How much work is done in bringing a charge of 2.5x10° C from one point to
another, if the potential difference between the two points is 4 volt?

Solution: Given q=2.5x10° C, AV =4 volt
Using, AV = %

or W=AVxq=4x2.5x10°= 107 Joule

Self Assessment Question (SAQ) 1: Calculate the electric field intensity at a point where a
charge of 5x 10 C experiences a force of 2.25 N.

Self Assessment Question (SAQ) 2:Ana-particle is kept in an electric field of 1.5x10°N/C.
Calculate the force on the particle.

Self Assessment Question (SAQ) 3:What is the intensity of electric field due to a helium
nucleus at a distance of 1 A” from the nucleus?

Self Assessment Question (SAQ) 4: A point charge of 6x10® C is situated at the coordinate
origin. How much work will be done in taking an electron from the point x;meter to x, meter
where potential difference is 50 volt?

Self Assessment Question (SAQ) S: The electric field intensity at a point on the line joining two
point charges is zero. What conclusion can you draw about the charges?

Self Assessment Question (SAQ) 6: Calculate the acceleration of an electron in an electric field
of 9x10° N/C. The charge on an electron is 1.6x10™"° C and its mass is 9.1x107' Kg.

Self Assessment Question (SAQ) 7: In the given diagram, calculate the resultant intensity of
electric field at the point P due to all charges. The charges are in pC and the distances in cm. If a
charge 1 nC is placed at point P, what will the force on this charge? Also give the direction of
force acting on the charge.
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2.8 ELECTRIC POTENTIAL AS LINE INTEGRAL OF
ELECTRIC FIELD

Let us consider a region in electric field. The intensity of electric field at any point is specified
byE. Let a positive test charge qo be displaced from point P to point Q, opposite to the direction

of electric field. Then the external force on test charge F=- qOE

w51}

dr

Figure 7

Therefore, the work done in displacing the test charge through a small displacement dr will be-
dW = F)E') =- qoﬁ.a
The total work done in displacing the charge from point P to point Q is

WPQ = -qofPQ E E‘)
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where the integral extends along the path from P to Q.

Therefore, the potential difference between two points P to Q will be-

VQ—VP—ML]QE dr-...(15)

If the point P is taken at infinity, the reference level for zero potential, i.e. Vp = 0, then the
potential at point Q, Vo= — fs E.dr .....(16)

Thus, the electric potential at any point in an electric field is defined as the negative of line
integral of electric field from infinity to given point.

29 ELECTRIC FIELD AS NEGATIVE GRADIENT OF
POTENTIAL

P orQ

%Y, 2) (xFox, y+3y, 2+62)

Figure 8
Let us consider that V and V + 8V are the electric potential at two neighbouring points P and Q
having coordinates (X, y, z) and (x+0x, y+dy, z+0z) respectively.
Since electric potential V is a function of (x, y, z) i.e., V =V (X, y, z), then the potential
difference between points P and Q may be written in the following general form-

AV——5 + 5y+ 6Z

or, (za—V aV /2—) (i0x+ jSy+kdz)=VV.dF ....(17)

ox 6y
IfE is the electric field intensity in the region of points P and Q, then by definition, the potential
difference between two points P and Q separated by distance 67 = (iSx+ j& y+l€52) is given
by-
AV =-E .o ..(18)
Comparing equation (17) and equation (18), we get-

-E.8r=vv.ér

or (E+VV)or=0
Since dr is arbitrary, we must have-

E+VV =0

orE=-VV=-grad V .(19)

Thus, the electric field intensity at any point is equal to the negative gradient of the potential at
that point.
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Equation (19) can be written in terms of components as-
OV A0V A0V

E=iE +JE,+kE, = (1 =+ ] —+k— (20
 +JE, +kE. (ax P aZ) (20)
Comparing coefficients, we get-
_ W g g v
Ei=-—, EY_'ay’ E,=-— .(21)
_
In general, E=- o

2.10 CALCULATION OF ELECTRIC POTENTIAL

In this section, we shall calculate the electric potential in different cases. Let us discuss one by
one.

2.10.1 Due to a Point-charge

Let us consider a charge of +q coulomb is placed at a point O (as shown in figure) in air ( or
vacuum). Let P is the point at which the electric potential is to be calculated. The distance of
point P from O is 1.

+q *qo
. I — > F
O P B A
« > >
r dx
X
Figure 9

Let a test charge +qp is placed at point A, distant x from point O and away from point P.

By Coulomb’s law, the electric force acting on q is given by-

F=— 99 (along OA)

4mey x2

Let us consider another point B at a distance dx from point A towards O ( i.e. at a distance —dx
from A ). Then the work done in bringing the test charge +qo from point A to point B against the
force F is-

dW =F. dx =F dx cos180°

_ 1 49 _ _1 qqo
R ey
0 TEg X
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Therefore, the total work done in bringing the test charge +qo from infinity to P is-

W=£(—iﬂ@¢0=—lﬁ%£019

4mey X2

-1 [l] - [l_i
41t80q 9 X1 - 4nsoq 9 r 0o
—_1 9%
4meg T
By definition, the electric potential at point P,
w 1
Vv==2 =1
do 4meg I
149
or V=—"o= .....(22)
4meg T
If the system is in a medium of dielectric constant K, then
__1 4
V—%SOKF (23)

Similarly, the electric potential at point P due to a charge —q is given as-

v=——1 28

4negK r
2.10.2 Due to a system of point charges

Electric potential, being a scalar quantity, has no direction. Therefore, the electric potential at
any point due to a group of point charges is found by calculating the potential due to each charge
and then adding algebraically the quantities so obtained.

P

+q2
Figure 10
If a point P is at distances 1, 17, 13 T4 ......... from the point charges +q;, +q2, -q3, -
Qbevvnvnnen respectively, then the resultant electric potential at that point will be-
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Vel [Bpomg L ]e5)

4meg L1y T2 T3 T4

If there are n point charges, then the electric potential due to them at a point P will be-

=t S 6
dre, T r,

1

Where 1; is the distance of the point from the charge g;.
2.10.3 Due to a continuous charge Distribution

If the charge distribution be continuous, then the summation in the above expressions will be
replaced by integration i.e.
-1 (4
\Y% ‘mof . <(27)

Where dq is a differential element of the charge distribution and r is its distance from the point at
which V is to be calculated.

If the charge distribution is linear charge of charge per unit length (1), then the charge on length
element dl is dq = A dl, then
=1 ad (28)

4mg o

If the charge is distributed continuously over an area S, then dq = ¢ dS, where o is surface
odS

density of charge. Then, we have V = i I . .....(29)
0
Where integral is surface integral.
Similarly, if the charge is distributed continuously within a volume V, then
_ L[y
V—m()f [ - .....(30)

Where p is the volume charge density and integral is volume integral.

Example 6:Calculate the electric potential due to pint charge +1.1x10” C at a distance of 100
mm.

Solution: Given, q=+1.1x10° C, r =100 mm = 0.1 m

1.1x107°
0.1

Using V= Lﬂ, the electric potential V = 9x10° x
4meg T

=+99V
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Example 7:Two point charges + 6 pC and -2 uC are 0.8 m apart. Locate the point at which the
electric potential is zero.

Solution: Let us suppose that at point P, the electric potential is zero. Let the distance of point P
from charge + 6 uC is x. Obviously, the distance of point P from charge will be (0.8-x) m.

i

o (@)
+ 6 uC 2 uC
X .8-x
The electric potential at point P due to charge + 6 uCis, V, = 4;:13 %
0

6x107°

=9x10" x—=—V

_ -6
Similarly, the electric potential at point P due to charge -2 uC, V,=9x10’ X% \Y
2x1076

_ 9
=-9x10 X(O.S—X)

Since the electric potential at P is zero, it means the algebraic sum of V; and V, should be zero
i.e, V] + V2 =0

—6 —6
or 9x10° xZX2_ _9x10° xZ0_—
(0.8-X)
E _ 1
of x (0.8-x)
or x=0.6m.

Example 8: Determine the value of V- Vg in the given arrangement.

se—X p2 Y LB X >0
tq -q

Solution: x Ay B x
Y——r———
*q -q
The electric potential at point A due to charge +q, V| = ﬁ% =9x10° X%
0

Page 36



BSCPCH102 ELECTRICITY AND MAGNETISM

Similarly, the electric potential at A due to charge —q, V, = 9x10’ D — _gx10° x—1—

(x+y) (x+y)
Total electric potential at point A, V5 = V| + V, =9x10° x q 9><1()9 9 _9x10° X[x = +y) 4
Similarly, the electric potential at point B due to charges +q and —q are 9x10° x ( and 9x10°
X§ respectively.
- : : _ 9,4 9.9 _ 9 !

The total electric potential at point B, Vg =9x10 ><—(X+y) 0x10° x=. =9x10 X[(X+y) x]

9 9 q q
Therefore, VAo — Vg = 9%10 X[X o )] 9x10 X[m_i]

— 9 9, 99_ 9,29y
910 X[X (X+Y) (x+y) + ] 910 ><X(>C+y)

2qy
or Va—-Vp=——""—
AT VB 4neg x(x+y)

Self Assessment Question (SAQ) 8: The electric field intensity is zero at a point. Will the
electric potential be necessarily zero at that point?

Self Assessment Question (SAQ) 9: The electric potential is constant throughout a given region
of space. What is the electric field intensity in that region?

2.11 THE ELECTRIC FLUX

The electric flux through a surface is defined as the total number of electric lines of force passing
through that surface normally.

Ar A A

>/'

w51}
D

Figure 11

The electric flux through an elementary area dS is defined as the dot product (or scalar product)
of electric field and the surface area 1.e.
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Electric flux d@ =E . dS .....(31)

Let 0 be the angle between the direction of electric field E and the direction of surface area dS
then, d® =E dS Cosb .....(32)

The total electric flux through entire surface Sis obtained by adding up the scalar quantity E.dS
for all elements of area into which the surface has been divided.

Thus the total electric flux ® = YE . dS ...(33)

If the surface is continuous and electric field is different at different surface elements, then
summation in equation (33) is replaced by integration, therefore the total electric flux through the

entire surface, ¢ = jE.dg .....(34)
S
Electric flux is a scalar quantity. Its unit is Newton-metre’Coulomb™.

2.12 THE GAUSS’S THEOREM

Karl Friedrich Gauss gave a theorem that relates total outward electric flux through a
hypothetical closed surface. This theorem is known after his name Gauss’s theorem. The
hypothetical closed surface is called Gaussian surface.

Gauss’s theorem states that the net outward normal electric flux through a closed surface of any
shape is equal to 1/g times the total charge contained within that surface, i.e.

mE.d§=iZq ....(35)
S &

Where[lj indicates the surface integral over whole of the closed surface, ) q is the algebraic sum
N

of all the charges (i.e. net charge in coulombs) enclosed by the surface S.
Proof:Let us first proof Gauss’s theorem for internal point.
Direction of normal

dodsS 0

i

+q P

Figure 12
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Let a point charge +q coulomb be placed at point O within the closed surface. Let E be the
electric field intensity at point P. Let OP = r and the permittivity of the free space or vacuum be
€0.

Let us consider a small area dS of the surface surrounding the point P. The electric flux through
ds is-

dp=E.dS (i)
Electric field intensity at point P, E=— % =2 q—3r
4meg T 4meg I
. . 1 #dS ..
Therefore, from equation (i), d@® =-—q—- .....(11)
4neg T T

But

7.dS _ dSCos6
3 y2

= solid angle subtended by area dS at point O.

0 = angle between E and dS
From equation (ii), we get-
=1 -9
do = 4meg 9 do 4meg do

Hence electric flux through entire closed surface-
—|F daS=-L 0
1) J.SE .dS 4n80,[80) ... (111)

But §H(o is the solid angle due to the entire closed surface S at an internal point O = 4n

Therefore, from equation (iv), @ = % 4 = giq
0 0

If there are many charges +q;, +q, +qs, ... Qi Q2 3 e inside the closed surface,
each charge will contribute to the electric flux. For positive charges, the flux will be outward and
hence positive; for negative charges, the flux will be inward and negative. Therefore, the total
electric flux in such a case is-

1 1 1 1 1 1
=—q +—q +— e - =R Q3
@ £o qQ £o 9@ £o 4 £o i €o 9 €o e
_1 s s s
_g(ql—i— Prgzt.......... S ¢ LA ¢ | N N )

_
=524
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Thus @ = 8—102q
Where ) q is the algebraic sum of the charges within the closed surface.

. . 1. .
Hence, net electric flux through a closed surface is equal to — times the total charge ( in
0

coulomb) enclosed within the surface which is Gauss’s theorem.
Now let us proof Gauss’s theorem for external charge.

Let us consider a closed surface S enclosing no charge, charge q is placed at the external point O.
We construct a cone of lines of force from charge q to cut the surface. The surface of any shape

is intersected in an even number of patches ( here 2); the contribution to electric flux due to these
intersecting surfaces are - % do and + % dow, therefore that flux through the surface is
0 0

zero.Hence, charges external to Gaussian surface do not contribute to electric flux. Thus, Gauss’s

theoremd.sﬁ .dsS =€l x charge enclosed by surface, is true whether external charges are present
0

or not.
\/' Ez
do |
%.
q
O
1
S

Figure 13

If the system is in a medium of dielectric constant K, then Gauss’s theorem can be written as-
.[ SE .dS= %Zq ©
=L (36
- KZq .....(36)

It is to be noted that Gauss’s theorem remains valid as such even for charges in motion.
Moreover it is applicable to any field obeying inverse square law.
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2.13 APPLICATIONS OF GAUSS’S THEOREM

It is very interesting that that Gauss’s theorem provides a convenient method for determination
of electric field intensity in symmetrical cases. Here, we consider a imaginary Gaussian surface
symmetrical to given charge, compute electric flux through this Gaussian surface and equate this

1 . : o
flux to = charge enclosed by the surface. Now let us discuss some important applications of
0

Gauss’s theorem.

2.13.1 Electric Field due to a Point-charge

Let us consider a point charge q coulomb placed at point O. We have to find out the electric field
intensity due to this charge at a point P distant r from it. Let us consider a closed spherical

surface with centre at O and the point P lying on it. By symmetry the electric field E has the
same magnitude all over the surface and points everywhere normally outwards.

+q

Y
A 4

w3l

ds

Figure 14

Electric flux through the spherical surface, @ = j;sE .dS= E E dS Cos

=ERAS =E (4n )
(SinceRydS = 4n 1, total surface area of sphere)

Charge enclosed by the surface = q
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According to Gauss’s theorem,

- — o
_[sE .dS = l/Sozq
E (4n r2)=iq
€o
or E=— %
4TEG T

In vector form, we can write-

This is the expression for electric field intensity due to a point charge using Gauss’s theorem.

2.13.2 Electric Field due to a charged spherical shell

Let us consider a thin spherical shell of radius R and carrying charge Q with centre O. Let us first
calculate the electric field outside the charged spherical shell.

Gaussian surface

Figure 15

Let us consider a point P at a distance r outside the shell. Let us draw an imaginary spherical
surface of radius r = OP, concentric with the shell. By symmetry the electric field Ey at each
point of surface is same and is directed radially outward. Let the value of electric field at the
surface be E,.

The net electric flux through the entire surface, @ = %E o0 - ds = ,F s Eo dS Cos0
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= J s Eo dS =% I sdS=ES&nr’ (Since I <dS = 4ncr>2, total surface area of sphere )

Total charge enclosed by the surface =+ q

Using Gauss’s theorem, @ = j;SE .dS= 1/e0d q

Eo 4n = 1/e0)q

1
or Eo= %
47'[80 T

Which is same if the charge Q was kept at the centre O. Hence the electric field intensity at a
point outside a charged spherical shell is same as though the charge was kept at the centre O.

Now, let us calculate the electric field inside the charged spherical shell. For this, let us consider
a point P’ inside the shell at a distance of r i.e. r < R. Let us draw an imaginary Gaussian surface

of radius r( r = OP’), concentric with the shell. If Ei is the electric field inside the shell, then by
symmetry E ; 1s same at each point of spherical surface and is directed radially outward.

jrah

Figure 16

Net electric flux through the surface, @ = SE P ds = .Ps E; dS Cos0

= 5% EidS= EICJs sdS=Ei4nr (Since j%dS = 47 1%, total surface area of sphere )
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Total charge enclosed by the surface > q =0

Therefore, using Gauss’s theorem, we have-

@= JsE.dS=l/eq
Ednr =0
or E=0
Thus electric field intensity at each point within the shell is zero.

Example 9:How much electric flux will come out through surface ds=5k kept in an electric
field E = 3i + 7~ + 4kA 2

Solution: Here dS = 5k, E = 3ir + 7iN + 4k~
Electric flux,, @ = E.dS= 3i* + 7)™ + 4kM). S kA
= 20 units

Example 10:1 coulomb charge is kept at the centre of a cube of side 5 cm. Find out the electric
flux coming out of any face of the cube.

Solution: Given q = 1 coulomb ( the charge enclosed by the surface)
Net flux through the cube, @ = 1/g, x total charge enclosed by the surface
=1/gg x 1=1/g

Cube has six faces. By symmetry the electric flux through each of cube face will be same. Hence

the electric flux through a face of cube=x1/gg=— = 1.884 x 10'" N-m’/C”
0

Self Assessment Question (SAQ) 10:A charge q is kept at the centre of a cube of side ‘a’. What
is the electric flux through any one face of cube?

Self Assessment Question (SAQ) 11: Choose the correct option-
The electric field intensity inside a spherical shell is-

(a) Always zero (b) sometimes zero (c) infinite (d) none of these
Self Assessment Question (SAQ) 12: State True or False-

Gauss’s law is basically equivalent to Coulomb’s law.
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2.14 SUMMARY

In the present unit, we have studied the concept of electric field, electric lines of force and their
properties. We learnt that an electric line of force is that imaginary smooth curve drawn in an
electric field along which a free, isolated unit positive charge moves. The tangent drawn at any
point on the electric line of force gives the direction of the force acting on a positive charge
placed at that point. We have also learnt that no two electric lines of forces can intersect each
other. We have established the expressions for electric field intensity and electric potential due
to a point charge, a system of point charges and continuous charge distribution. We have studied
and analysized the physical significance of electric field intensity. In the present unit, we have
learnt about electric potential and electric potential difference. We have learnt that the electric
field intensity at any point is equal to the negative gradient of the potential at that point. In the
present unit we have learnt that the electric flux through a surface is defined as the total number
of electric lines of force passing through that surface normally. We have studied and proved
Gauss’s theorem in electrostatics. We have derived some expressions for electric field intensity
using Gauss’s theorem. Several solved examples are given in the unit to make the concepts clear.
To check your progress, self assessment questions (SAQs) are given place to place.

2.15 GLOSSARY

Experience- occurrence

Set-up- arrangement

Perturb- disturb, agitate
Characteristic- properties
Independent- autonomous, free
Significance- implication, importance

Exert- apply, put forth, bring to bear

2.16 TERMINAL QUESTIONS

1. Give the concept of electric field.

2. Draw electric lines of force due to an isolated negative charge.

3. Define electric lines of force and discuss their important properties.
4. Two electric lines of force never intersect each other. Why?

5. Establish the expression for electric field intensity at a point due to a point charge.
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6. Explain the physical significance of electric field intensity.
7. Define potential difference between two points. Hence define electric potential at a point.

8. A charge +7 x 10" C is moved between two points. The potential difference between those
points is zero. Estimate the work done in this process.

9. What is the physical significance of electric potential?
10. Prove that the electric potential is the negative of line integral of electric field.

11. Give the derivation of the electric field from electric potential.

12. Prove, E = - grad V
13. How does the electric potential due to a point charge vary with distance?
14. Establish an expression for electric potential due to a point charge.

15. Calculate the electric potential at the centre of a square of side ‘a’ which carries at its four
corners charges i, q2, q3 and qa.

16. What is electric flux? What is its unit? Give its significance.
17. State and proof Gauss’s theorem in electrostatics.

18. Using Gauss’ theorem, prove that the electric field intensity due to a charged spherical shell
at a point outside the shell is given by-

Eo= 41:15 rQ—Z , where Q is the charge on shell and r is the distance of a point outside from the
0

centre of shell.

19. Establish the expression for electric field intensity due to a point charge at a distance r as an
application of Gauss’s theorem.

2.17 ANSWERS

Self Assessment Questions (SAQs):

1. Givenq=5x10"C,F=225N
Using F = gE, the intensity of electric field E = F/q = 2.25/5% 10* =4.5x10° N/C

2. Given E = 1.5x10° N/C, we know that the charge on a-particle q =+3.2x10™"° C
Using F = qE, the force on a-particle F = 3.2x10"°x1.5x10° = 4.8x10™ N

3. The helium nucleus has a positive charge equal to that on an o-particle i.e. the charge on
helium nucleus q =+ 3.2x10"° C, here r= 1 A’ = 10" meter
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We know that E = 18 4

4n0r2

-19
=9x109x%= 2.88x10" N/C

4. Here, q=6x10"C, AV =50 volt

Using AV = %, the necessary work w = q AV = 6x10™ x50 = 3x10° Joule
5. We can conclude that the charges are similar.
6. Here q=1.6x10" C, m=9.1x10"' Kg, E = 9x10° N/C

Electric force on electron F = gE =1.6x10™" x 9x10° = 1.44x10"° N

Now F =ma ora=F/m=1.44x10"%/9.1x10>" = 1.58x10"" m/sec’

7. +5uC 8 cm -3.6uC
A 0 B o
0
Y
10 cm 6 cm
A E2
X

1

The electric field intensity at point P due to charge +5uC, E; =

4mgg 12
-6
—9x10° x% = 4.5x10° N/C (along AP)
-6
Similarly, the electric field intensity at point P due charge -3.6uC, E, = 9x10° X%

=9x10°N/C (along PB)

Let us resolve E; and E; into its components considering origin at P and X-axis and Y-axis as
shown in figure.

Resultant electric field intensity along X-axis, Ex= Ex+Ex

= (4.5%x10° cos 0) + 0

= (4.5x10° x%) =3.6x10° N/C
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Similarly, total electric field intensity along Y-axis, Ey= E;y+ Eay
= (-4.5x10° sin 0) + (9x10°)
= (- 4.5%10% =) + (9x10°)

= 6.3x10° N/C

Resultant electric field intensity at point P, E = / EZ + Ef

= /(3.6 X 108)2 + (6.3 x 106)2 = 7.3x10° N/C

. . . . . 1E
If the resultant electric field intensity at P makes an angle 6 with +X-axis, then 6 = tan IE—y

X

6.3x10°
3.6x10°

= tan™' ( ) =tan™( 1.75)

The force on 1uC placed at point P, F = gE= 1x10°x7.3x 10° = 7.3N (in the direction of E)

8. The electric field intensity is zero at a point exactly midway between two equal and similar
charges, but the electric potential at that point is twice that due to a single charge. Therefore,
the electric potential will not be necessarily zero at that point.

9. We know that E = —j—\:

: . . . : : dv
But V is constant throughout a given region space i.e. V is constant with r. Therefore,a =0

and hence E is zero.
10. Total charge enclosed by the surface = q

Net flux through the cube, @ = 1/g, x total charge enclosed by the surface
= 1/g9 X q=q/eo

Cube has six faces. By symmetry the electric flux through each of cube face will be same.

Hence the electric flux through a face of cube= %X q/ep = i
0
11. (a)
12. True

Terminal Questions:
8. The potential difference between two points is zero i.e. AV =0

The work done in the process W=qAV=qx0=0
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) 1 ) 1
13. Since V=—"-3 je. Vo -
4meg I r

Obviously, the electric potential is inversely proportional to distance. The magnitude of
electric potential increases with decrease in distance.

15. a

qQ1 qQ2

qs ® o Q3

The length of diagonal of square = aV2

The half of the length of diagonal = aV2 /2 = a/\2

q1

The electric potential at the centre C due to charge q;, V, = ﬁm
0

. . 1
The electric potential at the centre C due to charge qz, Vo = K(%)
0

The electric potential at the centre C due to charge q3, V3 = L(?%)

4meg

V2

The electric potential at the centre C due to charge q4, V4 = L(?T“)

4neg

V2
The total electric field at the centre of square V=V, + V, + V3 +V,

1 qq 1 qz 1 q3 1 qq

- 4meg (%) * F&;@ * 4-7580@ * E@

vV
= —21q+ @t g3 + q4]

4meg a
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3.1 INTRODUCTION

In the previous unit, you have learnt about electric field, electric lines of force and their
properties. You have calculated electric field intensity and potential due to a point charge, a
system of point charges and a continuous charge distribution. You have also studied electric flux,
Gauss’s theorem and applications. In the present unit, you will study, calculate, learn and analyze
the electric potential and electric field due to an arbitrary charge, long charged wire, sphere and
disc. You will also study about electric dipole and calculate the electric field intensity and
potential in different cases of electric dipole. In this unit, you will learn also about energy stored
in an electric field.

3.2 OBJECTIVES

After studying this unit, you should be able to-

e learn about electric potential and electric field due to various bodies

e learn about electric dipole

e compute electric field intensity and electric potential in various cases

e solve problems based on electric field, electric potential and electric dipole

3.3 ELECTRIC FIELD INTENSITY AND POTENTIAL DUE TO
AN INFINITELY LONG CHARGED WIRE

Let us consider a section of an infinitely long straight wire charged uniformly. Let the linear
charge density ( i.e. charge per unit length) of wire be A C/m.

E

P S3

A

Figure 1

Let us consider an imaginary cylindrical surface (Gaussian surface) of radius r and length / co-
axial with the line charge and enclosed by two flat circular surfaces perpendicular to the line
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charge. By symmetry the electric field intensity Eis equal in magnitude and is directed normally
at every point of the curved cylindrical surface. Obviously, there are three closed surfaces- two
flat surfaces S; and S;; one curved cylindrical surface S;.

Applying Gauss’s theorem-

_[SE .ds = 1/g0) q 0

or §51E .dS + J.OSQE .dsS +J‘§3E .dsS =1/e0d.q

or f s1 (¥ dS Cos 90°) + f s2 E dS Cos 90°) + f s3 (B dS Cos 0% = 1/g0Yq

or 0+0+ E _[53 dS = 1/gCAx0) [ since total charge > q =A%/ ]

or E(2rnrl) =1/eg x M [ since)s3 dS =2m r /= total curved surface area]
N x

The equation (1) gives the electric field intensity due to an infinitely long charged wire at a
distance r.

Now let us calculate electric potential due to an infinitely long charged wire. In the previous unit,
we have learnt that the electric potential at a distance r from the axis is given as-

V,=— [ E.dr (2

Here at infinity (reference level), the potential is taken as zero. But in this case, reference
distance cannot be taken as infinity since the wire itself extends to infinity. Hence in this case,
we shall find the potential difference between two points distant r; and r, from the wire. We

know that Potential difference Vg — V= % = 'fz? E.dr.. ...(3)
0

Using above relation, we have the electric potential difference AV = - f:; E.dr

_ M 0_ (M
——frz E dr Cos 0 ——frz Edr

o1 2) 1 .
=-['—=dr=—221og. 2
T2 4meg 1T 4mey T

T2

=2 log, =

2TEy T1
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Or potential difference AV = 2 1o Je z ceen(®)
2TEg T

The above expression gives the potential difference AV (or V;;- V») between two points distant
rpandr; .

3.4 ELECTRIC FIELD INTENSITY DUE TO CHARGED
SPHERE

Let us consider a non-conducting sphere of radius R. The charge Q is uniformly distributed over

(5

it. The charge density of sphere p =3 13
-
3

P is the point at a distance r from the centre of sphere at which electric field intensity is to be
determined. Now let us discuss different cases as follows-

Case (i) Point P lies outside the charge distribution, at external point (r >R)

Gaussian Surface

ds

v

Figure 2

Obviously, OP = r. Let us draw a spherical surface (Gaussian surface) of radius OP = r
concentric with the spherical surface. As the electric charge is uniformly distributed, by
symmetry the electric field intensity Ep at every point of this spherical surface has the same
magnitude and is directed along the outward drawn normal to the entire surface.

Total electric flux through the entire surface = | sE—o) ds= | s EodS Cos 0°

= ,[s Eo dS = Eo Ist
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=Eo (4nr?) [ since [sdS = total surface area of spherical surface = 4nr” |
Total charge enclosed by the Gaussian surface = Q

Using Gauss’s theorem-

J.SE .ds = 1/e02.q

Eo (4nr?) =1/gpx Q

_19

Eo = p— ....(6)
This is the same if the charge Q was placed at the centre of sphere O. Hence, the electric field
intensity at any point outside a spherical charge distribution is the same as through the whole

charge were concentrated at the centre.
Case (ii) Point P lies on the surface of spherical charge distribution (r= R)

If point P is on the surface of spherical charge distribution, then r = R i.e. the distance of point P
from the centre of sphere is equal to the radius of sphere. In this case, the electric field intensity
on the surface of the spherical charge distribution is given as-

Eg= — (D)

47I80 R2
Case (iii) Point P lies inside the charge distribution, at internal point(r<R)

Let point P is inside the spherical charge distribution. The distance of point P from the centre of
sphere is r.

2l

Figure 3
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Let us consider a sphere of radius r concentric with spherical charge. Let the whole surface be
divided into thin concentric shells. The electric field intensity at point P is the combined effect of
shells outside P as well as those inside P. But we know that the electric field intensity due to
outer shells is zero. Thus, the electric field intensity at point P is due to inner shells only.

By symmetry the electric field intensity E; at every point of the spherical surface of radius r has
the same magnitude and directed along the outward drawn normal to the surface.

The total electric flux through the entire surface = | sE ds= | s E;dS Cos 0°
=[sE; dS = E; [sdS
=E; (4nr) [ since [sdS = total surface area of spherical surface = 4nr” |
Total charge enclosed by Gaussian surface, Q = charge enclosed by a spherical core of radius r

=Volume of spherical core x volume charge density

mr3p

WA

Using Gauss’s theorem-
J‘SE; .dS = 1/gxQ

E; (4nr%) =1/zyx Gnr®p)

_ 1 g
_4nso r2
1 5wt q Q
3 . B :
— X Since p= equation (5
o 2 T [ p TR q (5]
1 r
or Ei——Q— ..(8)

 4meo R3

Therefore, the electric field intensity at internal point of a spherically symmetric charge
distribution is directly proportional to the distance of the point from the centre of spherical
charge.

We have observed that the electric field intensity outside the charge distribution is inversely

proportional to the square of the distance of the point from the centre of spherical charge. In this

way, the electric field intensity is maximum at the surface of the spherical charge equal to S
4mgy R2

The variation of electric field intensity due to a uniformly charged non-conducting sphere is
shown in the following figure 4
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EA
-+ Q
Es Es = 4mgy R2
1
Eo a r_2
E/or
O > T
R
R >
Figure 4

3.5 ELECTRIC POTENTIAL DUE TO A CHARGED SPHERE

Let us consider a uniformly charged spherical volume of radius R containing charge Q. The

volume charge density, p =z 9 -
Eﬂ:R

Let us learn and discuss the electric potential due to a charged

sphere in various cases.
Case (i) At external point of spherical volume (r >R)

Let us consider a point P outside the spherical volume at a distance r > R.
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Figure 5
The electric field intensity at point P is given
- 1 .
E = %r
drg, r
The electric potential at point P,
B r— - _ r 1 2 AT
V=-[ E.dr=-f el
—147
:_&frr—Zdr:_i[r_ -t Q .(9)
4megg Y0 dneg L—11o 4meg T

This expression is same as that of electric potential due to a charge placed at the centre O. In this

way, for external points the spherical charge
the centre of the spherical charge.

Case (ii) Inside the spherical charge i.e. at

behaves as if the entire charge were concentrated at

internal point (r <R)

Let us consider a point P’ inside the spherical charge at a distance r from the centre O at which

electric potential is to be determined.

Figure 6
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We have calculated the electric field intensity due to a uniformly charged non-conducting sphere
at external and internal points as-

E_O)Zigr andE— L %s

4meg 12 4meg R3

The electric potential at point P at a distance r < R from the centre is given by-
V=-["Edr=-[[ Eo.dr+ [, E.dr ]

Putting for E_O) and E in the above expression, we get-

[le QAd frlQr,\

0 4mgy 12

= ([, Shdr + [y fdr]

4meg

_'K[I;Qd +f1:§2 [Since T. dr = 1x dr x Cos 0° = dr ]

—Q[f) Gdr+ 5 frdrl=- Q[()w 22 ()R]

4-ns

3R%Z—1?

—Q [ 1.....(10)

4-nso

This is the expression for electric potential at internal point.

3.6 ELECTRIC POTENTIAL DUE TO A CHARGED DISC

Let us consider a flat insulating disc of a radius ‘a’ carrying a positive charge Q spread uniformly
over its surface. Let ¢ be the surface charge density of the disc. The disc considered here is non-
conducting because if it is conducting, it would become a surface of constant potential and not
that of uniform charge as the charge on the conducting disc would redistribute itself, crowding
more towards the rim of the disc.

Let us calculate electric potential due to a charged disc.
Case (i) At point on the axis of symmetry

Let us consider a point P on the axis of symmetry at a distance x from the centre of the disc. Let
us suppose that the disc is formed of a large number of thin concentric ring shaped elements. Let
us consider one such ring shaped element of radius y and thickness dy.

The area of the ring element = circumference x thickness of the ring element = 2n y dy

The charge on the ring element dq = surface charge density X area of the ring element
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=0 (2nydy)

Figure 7

Electric potential at point P due to this ring element-

1 dq
dV = —
4meg o/ x2+y?

1 o(2mydy)

4meg  /x2+y?

The electric potential at point P due to the entire disc, V = [ 0 Tmy ViZy?
0

__1 a ydy _ o ra 2 P
Tt o fa T o v P YT dy

[(x2 + yz)%] Z%[m— x|

25 0
or V=%[Vx2+a2—x], forx >0
0

1

If x >> a, then VZZ;:O[x(1+z—z)E— xl=—[x+——2— x]

a 1 o2mydy)

(11)
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1 oma? 1 Q
4meyg X 4meg X
1 Q
or V=—-=_ forx>>a .....(12)
4meg X

Thus for axial points distant x >>a, the disc behaves like a point charge.
Case (ii) At the centre of the disc

At the centre, x = 0, therefore from equation (11), we get-

Ve=-=[V0Z+aZ -0 =§.....(13)
0

289

Figure 8

The figure 8 shows the variation of electrical potential along the axis of a uniformly charged
disc.

Case (iii) At the rim or an edge of the disc

Let A be the point on the edge of the disc. Let us consider a segment CD of a ring centred at A
of radius r and thickness dr.

Area of the segment =2 r 0 dr

Electric charge on this segment dq=2r 0 dro
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. . . : d 6d
The electric potential at point A due to this segment, dV = L dq_ 1 2r0cre

4meg T 4meg r

1
= (200) dr (14

The electric potential at point A due to entire charge on the disc is given as-

6=0 1

V= 6=n/2 Tog (200) dr .. (15)
C
r
A B
dr
Figure 9

From figure 9, r=2acos 0
or dr = - 2a sinf dO

From equation (15), we get-

V=22 070 6(—2asingdo) == [ 6sin6 do
~Jo-

20
4TTE 9=”/2

oa . T/2 oa
=—/|sin0 — 0 cosQ]o/ =—
TEY TEY

....(16)

Accordingly, the electric potential falls from the centre of the disc to the edge or rim. This
indicates that a uniformly charged disc is not an equipotential surface.

3.7 ELECTRIC FIELD DUE TO A CHARGED DISC

You have learnt that electric potential due to a charged disc on axial point is given as-
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VA ¥ — 4]

I
[\S]
mlq
o

Electric field intensity at axial point P at axial point P (Figure 7) at a distance x from the centre

. v _ 9o
OftthISC, E—-a —-a[a{va2+x2— x}]
=9 |1 =
or == [1- = (17
At the centre of the disc, x = 0, therefore electric field intensity E = % .....(18)
0

At axial points x >>a, the electric field intensity, E = % [1 - ﬁ]
0
== [1 —x(a® + xz)_%]
280

:% 1_(1+Z_§)_%l=2;:0 1—(1—%)], forx >>a

ca? 1 moa®? 1 Q

or E= 4-sox2 N 4meg 4meg N 4meg x_z’ fOI' X>>a N (19)
R
o
2¢&
-2a -a a
| | >
Figure 10
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Figure 10 shows the variation of electric field intensity along the axis of a uniformly charged
disc.

Example 1: The electric potential at the centre of an uniformly charged disc is 200 volt and the
radius of the disc is 30 cm. Determine the charge on its surface?

Solution: Given, V¢ = 200 volt, Radius of the disc, a=30 cm = 0.30 m

We know, Ve = 2

280

or 6= V¢ (2g)/a=200(2x8.85x107"%)/ 0.30 = 1.18x10™* C/m*

Nowo=— or q=cma’=1.18x10" x3.14x(0.30)* = 3.33x107'° C

ma?

Example 2:An infinite long conducting wire is stretched horizontally 3 metres above the surface
of the earth. The wire has a charge of 1 C per m of its length. Determine the electric field
intensity at a point on the earth vertically below the wire.

Solution: We know that electric field intensity due to an infinitely long wire at any point distant r
is given by-

1 2)
4meg T

Here, ,=1 C per m, r = 3 m; therefore E = 9><109><% =6x10° N/C

Self Assessment Question (SAQ) 1:Estimate the electric potential difference between the centre
and the surface of a sphere of radius ‘R’ with uniform charge density p within it.

Self Assessment Question (SAQ) 2:An infinite line charge generates an electric field intensity
of 3% 10° N/C at a distance of 2 cm. Calculate the value of linear charge density.

3.8 ELECTRIC DIPOLE

“If two equal and opposite charges are placed at a short distance apart, then this system is known
as an electric dipole.” The product of magnitude of one charge and the distance between the
charges is called ‘electric dipole moment’ and it is denoted by ‘p’.

P

90

Y

UM
21 —»

A

Figure 11

Page 64



BSCPCH102 ELECTRICITY AND MAGNETISM

Let two charges —q and + q coulomb are placed at a distance 2/ metre, then the electric dipole
moment is-

p=qx 21=2ql ...(20)

The electric dipole moment is a vector quantity whose direction is along the axis of the dipole
pointing from the negative charge to the positive charge. The unit of electric dipole moment is
coulomb-metre. Let us calculate the couple on an electric dipole in an uniform electric field.

3.8.1 Couple on an Electric Dipole in a Uniform Electric Field

Let us learn that what does happen with an electric dipole in an electric field. When an electric
dipole is placed in a uniform electric field, a couple acts upon the dipole. This couple tends to
align the electric dipole in the direction of the electric field. This is known as the ‘restoring
couple’.

v

v

2l

v

v

v

v

Figure 12

Let us consider an electric dipole AB placed in a uniform electric field E at an angle 6 with the
direction of electric field. —.q and +q be the charges of electric dipole at a distance 2/ from each
other.

Due to electric field E, the electric force on charge —q of dipole, F = qE ( in the opposite
direction of E )

Similarly, the electric force on charge +q due to E, F = qE (in the direction of electric field E)

Obviously, the both forces are equal in magnitude but opposite in direction, due to this the net
translator force on the electric dipole is zero, but these forces F and F (=F ) constitute a couple
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which tends to align the dipole in the direction of the electric field E. This couple is restoring
couple (7).
The moment of this restoring couple
T = magnitude of force x perpendicular distance between the lines of action of force

=F x (BM) = qE %2/ sinf

= 2q/E sinf = pE sin6 (since 2q/ =p)
Therefore, T =pE sin6 ..(21)
The unit of couple t is Newton-metre
In vector form, ©=p XE (22)
Where P is a vector from the charge —q to +q.

If 6 = 90°, i.e. electric dipole is placed perpendicular to electric field, then the couple acting on it
is-

7= pE sin90° = pE
In this case, the couple acting on dipole will be maximum, therefore-

Tmax :pE (23 )

_ Tmax

or
E

If E = IN/C, then p = tmax C-m, i.e., the moment of an electric dipole is equal to the couple
acting on the dipole placed perpendicular to the direction of a uniform electric field intensity of 1
N/C.

If 0 =0 i.e. dipole is placed parallel to electric field, then the couple acting on dipole-
1=pE sin0° =0 .....(24)

i.e. if the dipole is placed parallel to the field, then no couple will act on dipole.

3.8.2 Work Done in Rotating an Electric Dipole in an Electric Field

Let us consider a dipole placed in a uniform electric field. If it is rotated from its equilibrium
position, work has to be done.
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Let us suppose that an electric dipole placed in electric field, is rotated through an angle 6 from
its equilibrium position. During rotation, the couple acting on the dipole changes. Let us suppose
that at any instant, the dipole makes an angle o with the direction of electric field E.

The instantaneous couple acting on the dipole is-
T = pE sina

Amount of work done in rotating the dipole from this position through an infinitesimally small
angle da is-

dW = couple x angular displacement
= (pE sina) da
Amount of work done in rotating the dipole through the angle 0 from its equilibrium position is-
W= fog aw = foe(pE sina) da

6 . 0
=pE fo sina da = pE [— cos a]o = - pE [cos a]§

= -pE [cos 6 — cos 0] = -pE [cosO — 1]
or W =pE (1- cos 0) .....(25)

The above expression represents the work done in rotating an electric dipole in a uniform electric
field through an angle 0 from the direction of the electric field ( i.e. equilibrium position).

If 6 = 90°, i.c. the dipole is rotated through an angle 90° from its equilibrium position, then work
done-

W = pE (1- cos 90°)
=pE (1- 0) =pE .....(26)
If the dipole is rotated through 180° from the direction of the electric field, then the work done-
W = pE (1 — cos 180°)
=pE (1+1)=2pE (27
This is the maximum work done for rotating a dipole.
3.8.3 Potential Energy of an Electric Dipole in an Electric Field

“The potential energy of an electric dipole in an electric field is defined as the work done in
bringing the dipole from infinity to inside the electric field.”
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v
x5l

Fe— ® > ® »F— — — — — ———

-q 21 =—|—q From infinity

v

Figure 13

Let an electric dipole is brought from infinity to a uniform electric field E in such a way that the
electric dipole moment p is always in the direction of electric field. Due to electric field E, a
force F (= qE) acts on the charge +q in the direction of the electric field and an equal force F
(=qE) on the charge —q in the opposite direction. Therefore, in bringing the electric dipole in the
electric field from infinity, work will be done on the charge +q by an external agent, while work
will be done by the electric field itself on the charge —q.

Obviously, when the dipole is brought from infinity into the electric field, the charge —q covers
21 distance more than the charge +q. Hence, the work done on —q charge will be greater.
Therefore, the net work done in bringing the electric dipole from infinity into the electric field
= force on charge (—q) * additional distance moved

= (-qE)x2/=- (2q))E = -pE [since 2q/ = p]

This work is the potential energy Uy of the electric dipole placed in the electric field parallel to it
1e. Uy =-pE .....(28)

In this position, the electric dipole is in stable equilibrium inside the field.

If we rotate the electric dipole in the electric field through an angle 0, then work will have to be
done on electric dipole. This work is-

W = pE (1-cosB) .....(29)

This will result in an increase in the potential energy of the electric dipole. Hence, the potential
energy of the dipole in the position 6 will be given by-

Upg=Up+ W

= -pE + pE (1-cos0)
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= -pE + pE — pE cos0 = -pE cosf
or Up = -pE cos6 .....(30)
The above equation (30) represents the potential energy of the electric dipole.

In vector form, equation (30) can be written as-

—

U=-P.E (3D
If 0 =90° i.e. the electric dipole is placed perpendicular to the electric field, then
Uy = -pE c0s90° = 0

1.e. if we keep the electric dipole perpendicular to the electric field while bringing it from infinity
into the electric field, then the work done on the charge +q by the external agent will be equal to
the work on the charge —q by the electric field. In this way, the net work done on the dipole will
be zero and hence the potential energy of the dipole will also be zero.

If 6= 180°, i.e. if we rotate the electric dipole through 180" from the position of stable
equilibrium, then the potential energy, U,go = -pE cos180° = + PE

In this position, the electric dipole will be in unstable equilibrium.

3.8.4 Electric Field due to an Electric Dipole

In this subsection, you shall learn about electric field due to an electric dipole. You will calculate
the electric field intensity on the axis of a dipole (i.e. end-on position) and equatorial line of a
dipole (i.e. broad-side-on position).

(i) Electric field intensity at a point on the axis of a dipole ( end-on position)

Let us consider an electric dipole situated in a medium of dielectric constant K. Let P be a point
on the axis at a distance ‘r’ metre from the midpoint ‘O’ of the dipole at which electric field
intensity is to be determined.

2]

A
-
v

Figure 14
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The distance of point P from charge —q = (r+/)

The distance of point P from charge +q = (r-/)

1 g
ek D7 (along BP)

Therefore, electric field intensity at point P due to charge +q, E| =

Similarly, electric field intensity at point P due to charge -q, E> = 47; = (rfl)z’ (along PA)
0

Obviously, both intensities are in opposite directions, therefore net electric field intensity at point
P, E= E1 — E2 (since E]-Ez)

_ 1 q 1 q
amegK (r—-1)2  4megK (r+1)?

__q [ 11 1= q [(r+l)2—(r—l)2]
amegK “(r-0D%2  (r+1)? 4amegK (r2-12)2
__ 49 ¢ 4lr ] __1 2(2ql)r]
4nsOKL(r2—lz)2 4megK L(r2—12)2
1 2pr
or E=mr [2] n(32)

[since 2q/ = p, electric dipole moment]

The direction of E is along BP i.e. along the axis of the dipole from the negative charge towards
the positive charge.

If I<<r, then /* may be neglected in comparison to r*. Then electric field intensity at point P,

_ 1 fzpr]__1 J2p
E= ameoK [7] T ameok [r—g] N/C .....(33)
For air or vacuum, K =1, then E=-— 2—’;] N/C .....(34)
4meg LT

(ii) Electric field intensity at a point on the equatorial line of a dipole (broad-side-on
position)

Now let us calculate the electric field intensity at a point on the equatorial line. Let us suppose
that the point P is situated on the right-bisector of the electric dipole AB at a distance ‘r’ metre
from its mid-point ‘O’.

q
4megK (PB)?

Electric field intensity at point P due to charge +q, E| =

= 1 (along BP)

N 4megK (r2+12)°
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q

Similarly, electric field intensity at point P due to charge —q, E, = ook (PA)?
0

—47;01( (quTZ)’ (along PA)
Obviously, the magnitudes of E; and E, are equal but directions are different.
Resolving E; and E; into their components-
Horizontal component of E; = E; cosf (parallel to BA)
Vertical component of E; = E; sinf (perpendicular to BA)
Similarly, horizontal component of E, = E; cos®  (parallel to BA)
Vertical component of E; = E; sinf (perpendicular to BA)

E;
0
E \P
\
E, \
/ \\m
Vrz + 12 v/ \
/ \ 0
A / s | K
o ' <
-q @) +q

21

Figure 15
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Vertical components of E; and E, (E; sinf and E; sinf) are equal in magnitudes but opposite in
direction, hence they cancel to each other. But horizontal components (E; cos6 and E, cosf) are
in same direction. Hence the resultant electric field intensity at point P is-

E =E; cosO + E; cosb

=2E, cos0 (since E; = E,)

1 q
=2 cosf
4megK (r2+12)

l
Vr2+12

But in right angled triangle POB, cos0 = % =

1 q l
amegK (r2+12) Vr2 412

Therefore, E=2

1 2ql _ 1 14
- 3 - 3
ameoK (r2+12)°/2  4meoK (r2+12)°/2

[since 2q/ = p]

Thus, E=—_—P _ ....(35)

ameoK (r2412)°/2

The direction of E is horizontal along BA i.e. parallel to the axis of dipole from positive charge
to negative charge.

If I<<r, i.e. [ is very small in comparison of r, then /* can be neglected in comparison to r’; then

— 1 14 . 1 P
 4megk 2)’/2  4meoK 13 N/C ..--(36)
For air or vacuum, K =1 thenE:Lﬂ3 N/C o 37)
4TEY T

From equations (33) and (36), it is clear that for a short dipole the electric field intensity on an
axial point is twice the intensity at the same distance on the equatorial line.

3.8.5 Electric Potential due to an Electric Dipole

In this subsection, you will calculate electric potential at a point on the axis and equatorial line of
a dipole.

(i) Electric potential at a point on the axis of the dipole(end-on position)

Let us consider an electric dipole AB placed in a medium of dielectric constant K. P is the point
on the axis ( end-on position) at a distance ‘r’ from the midpoint ‘O’ of the dipole at which
electric potential is to be calculated.
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21

A B P

L f & —— — —— —
-q O +q

< r >
Figure 16
. . . __ 1 (o _ 1 q
Electric potential at point P due to charge —q, V| = ek Ap ek 4D
0 0
g __ 1 q

Similarly, electric potential at point P due to charge +q, V, = ook BP  amesk 0—D)

1 q 1 q
4megK (r+l) 4megK (r-1)

Resultant electric potential at point P, V=V, +V,=—

o q 1 1 q 21 1 2ql 1 p

e K i T 0D T ek ) ameik P1)  ameak G2-B) [since 2q/ = p]

Thus, y=—i__2P ....(38)

N 4megK (r2—12)

If dipole is short i.e. I<<r, then /* may be neglected in comparison to r*, then-

-1 P

V= pr—— volt .....39)

For air or vacuum, K =1 then V= L% volt .....(40)
4ATTEY T

(ii) Electric potential at a point on the equatorial line of the dipole (broad-side-on position)

P
/ |\
/ \
/ \\m
T E v/ \
-q q
3/ \
A : o s B
21
Figure 17
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Now let us consider a point P on the equatorial line of a dipole at a distance ‘r’ from the midpoint
‘O’ of the dipole at which electric potential is to be calculated.

: : : _ Co_ 1 q
The electric potential at point P due to charge -q, V; Tmeak AP pr—

a__1 4
4megK BP  4megK Vr2+12

Similarly, the electric potential at point P due to charge +q, V, =

Resultant electric potential at point P, V=V, +V,

1 q 1 q
AmegK V2412  4megK Vr2+12

=0
Thus, the electric potential at an equatorial point of an electric dipole is zero.

Example 3:Calculate electric dipole momentof the following dipole-

-1uC +1 nC

A
v

10 cm
Solution: Here, q=1puC=1x10°C,21=10cm=0.1 m
Electric dipole moment p=qx 21=1x 10° x 0.1 =1x10” C-m

Self Assessment Question (SAQ) 3: Two short electric dipoles of electric dipole moments p;

and p; are in a straight line. Prove that the potential energy of each in the presence of the other is

1 . . .
T p;%, where r is the distance between the dipoles.
0

3.9 SUMMARY

In the present unit, you have calculated electric potential and electric field intensity due to long
charged wire, charged sphere and charged disc. You have studied thatthe electric potential falls
from the centre of the disc to the edge or rim which indicates that a uniformly charged disc is not
an equipotential surface. In this unit, you have learnt about electric dipole and electric dipole
moment. If two equal and opposite charges are placed at a short distance apart, then this system
is known as an electric dipole. The product of magnitude of one charge and the distance between
the charges is called ‘electric dipole moment’. You have also study about the torque acting on an
electric dipole in a uniform electric field which is given as 1 = pE sinf, where p is the dipole
moment, E, the intensity of electric field and 0 is the angle that dipole makes with the direction
of electric field.You have calculated the electric field intensity and potential due to dipole in end-
on position and broad-side-on position.You have learntthat for a short dipole the electric field
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intensity on an axial point is twice the intensity at the same distance on the equatorial line. You

have also studied thatthe electric potential at an equatorial point of an electric dipole is zero.

3.10 GLOSSARY

Uniformly- homogeneously

Non-conducting- in which there is no flow of current

Align- line up, ally

Constitute- make up, compose, comprise

Rotation- turning round, revolution

3.11 TERMINAL QUESTIONS

1.

2.

Establish an expression for electric field intensity due to a long charged wire.

Prove that the electric potential difference due to a long charged wire between two points

. . A
distant r; and rp 1S AV =—Ilog, A
2Ty 71

. A conducting sphere of radius 1 cm has an unknown charge. The electric field intensity at a

point distant 2 cm from the centre of sphere is 2.7x10* N/C and points radially inward.
Calculate the net charge on sphere.

. Show that electric field intensity due to a charged sphere at an external point is given as-

Eo = ir%, where symbols have their usual meanings. Show the variation of electric field due
0

to a uniformly charged non-conducting sphere.

. Establish the formula for electric potential due to a charged sphere.

. Derive the formula for electric field due to a charged disc at a distance x from its centre. Also

show that at the centre of disc, the electric potential is g, where ‘c’ and ‘a’ are surface
0

charge density and radius of disc.

. Establish an expression for electric field due to a charged disc at an external point and hence

show that the electric field at the centre of the disc is given as E = %, where symbols have
0

their usual meaning.

. What do you mean by an electric dipole? Show that an electric dipole, in a uniform electric

field, experiences only a torque and no net force.
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9. Establish an expression for the torque acting on dipole in a uniform electric field.

10. Derive an expression for work done in rotating an electric dipole through an angle 0 in an
electric field.

11. Obtain the expression for potential energy of an electric dipole in an electric field.
12. Show that the electric field intensity due to an electric dipole at a point on end-on position is

1 [ 2pr
4megK L(r2—-12)2

given by E = ], where symbols have their usual meaning.

13. Prove that in air, the electric field intensity due to an electric dipole at a point on the

14
4meg (r2+12)3/2’

equatorial line of a dipole is E = where symbols have their usual meaning.

14. Prove that at a point in the broad-side-on position of an electric dipole the electric potential is
Zero.

15. Explain, how is the electric potential due to a short electric dipole at a point r distant on the

47; K% ? Here p and K are the electric dipole moment of dipole and
0

dielectric constant of medium.

axis of the dipole is

16. Two point charges of -3 pC and +3 pC are at a distance 0.2 cm apart from each other.
Calculate-

(1) electric dipole moment of the dipole

(i1) electric field intensity at a distance of 60 cm from the dipole in broad-side-on position
(ii1) electric potential at a distance of 60 cm from the dipole in broad-side-on position

(1v) electric field intensity at a distance of 60 cm from the dipole in end-side-on position

(v) electric potential at a distance of 60 cm from the dipole in end-side-on position

3.12 ANSWERS
Self Assessment Questions (SAQs):

1.We know that electric field intensity at a point distant r from the centre is given by-

o = 1 g 7~ =
E = yrcLl Q = Total charge on the sphere

The potential difference between the centre ( r= 0) and the surface ( r = R) is given by-

Vo—VR:-f:E.a
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B 0 1 QrA 0 1 Qr 0
——fRM[S o hdr=- [p ;—r5 (1 X drx cos0°)
0 1 1
=-f X gr=—12 rdr
R 4meq R3 4meg R3
_1q
41'[802R

Butp = orQ= gnRe’p

Z
2R3
3TL’R

4
Therefore, Vo — Vg = — 3 —=—

2. Given, E=3x 10° N/C,r=2 cm = 0.02 m

1 2

4TEy T

We know that E =

3% 10° = 9x109x% or A=3.3x107 C/m

The electric field due to short dipole of electric dipole moment p; at the other dipole is-

1 2p
4mey T3

The potential energy of dipole with dipole moments p; in the electric field is-

1 2p
U = -p,E cosb = -pyx
P2 P2 41E 73
_ 1 pip2
2mey T3

Terminal Questions:

3. Given,R=1cm=0.01 m, E=2.7x10* N/C,r=2 cm = 0.02 m

ing E— 2 i
Using E= mmeg 2 Ve get

2.7x10% = 9x10°x

or Q=12C

© 02)2
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16. The two charges form a dipole. Here q =3 pC =3x10° C, 21=0.2 cm = 0.002 m
(i) Electric dipole moment, p = q x 21 =3x10"° x0.002 = 6 x 10° C-m
(i1) r =60 cm =0.60 m

1 p 9 6x107°
= —=9x10"x
41rEy T3 (0.60)3

=250 N/C

(i11) Electric potential in broad-side-on position, V =0

(iv) Electric field intensity at a distance of 60 cm from the dipole in end-side-on position is-

E=——[%]=9x1

4TmEy LT

-9
09x% =500 N/C

(v) Electric potential at a distance of 60 cm from the dipole in end-side-on position is-

-9
v=-—"—12_9gx 10‘&%: 150 volt

4mEg 12 (0.60
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4.1INTRODUCTION

Electrical insulator materials which will prevent the flow of current in an electrical circuit are
being used since from the beginning of the science and technology of electrical phenomena.
Dielectrics are insulating materials that exhibit the property of electrical polarization, thereby
they modify the dielectric function of the vacuum. The first capacitor was constructed by
Cunaeus and Mussachenbroek in 1745 which was known as Leyden jar. But there were no
studies about the properties of insulating materials until 1837. Faraday published the first
numerical measurements on these materials, which he called dielectrics. Hehas found that the
capacity of a condenser was dependent on the nature of the material separating the conducting
surface. This discovery encouraged further empirical studies of insulating materials aiming at
maximizing the amount of charge that can be stored by a capacitor. Throughout most of the 19th
century, scientists searching for insulating materials for specific applications have become
increasingly concerned with the detailed physical mechanism governing the behavior of these
materials. In contrast tothe insulation aspect, the dielectric phenomena have become more
general and fundamental, as it has the origin with the dielectric polarization.

In this Unit we have consider the problems of electrostatics in the absence of matter. Now we
consider the phenomena in the medium other than empty space (vacuum) such as solid or liquid
insulator, alternatively called dielectric the theory of dielectric was begun by Michael Farady, in
1837, and subsequently developed by Maxwell.

The properties of dielectric may vary from point to point i.e., it may not be homogeneous and in
the neighbourhood of a point, the properties of a dielectric may not be same everywhere i.e. it
may not be isotropic.

4.2 OBJECTIVES

The Main objectives of the present unit are:
(1) To know about the Dielectrics.
(i1) To study about polarization vector P.
(iii))  To know about electric field of polarized piece of a dielectric.
(iv)  To know about potential of polarized piece of a dielectric.
(v) Gauss’s law of a dielectric.

4.3 DIELECTRIC

A dielectric is a substance in which all the electrons are tightly bound to the nuclei of the atom 1.
e., no free electron are available to carry current . Thus substances which do not permit the
passage of electric charge are called dielectric or insulators. The electric conductivity of a
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dielectric is very low (the conductivity of a dielectric is zero). Example: Certain substances such
as glass, plastic quartz, mica, resins, waxes and oil etc.

4.3.1 Dielectric Constant

The theory of dielectric was begun by Faraday and subsequently by Maxwell. Using a simple
electroscope and two parallel plate capacitors Faraday, discovered that dielectric materials can
conduct small conductivity. He constructed two identical capacitors, in one of which he placed a
dielectric. When both capacitors were charged to the same potential difference, it was found that
the charge on the capacitors with dielectric is greater than that without. Since q is large for same

V it follows from C :% that the capacitance of a capacitor increases if dielectric is between the

plates.
The ratio of capacitors after and before introducing the dielectric is known as dielectric
constant (K) of the material. Thus if ¢ is the capacitance with dielectric materials and C, that in

vacuum
- _ <

ie., K = o e (1)

The constant K is also called relative permittivity, specific inductivity capacitance or dielectric
coefficient.It is independent of the shape and size of the capacitor but its value varies widely for

different materials. For vacuum K = 1 (by definition), for air 1.006, for glass around 6 and so on.

4.3.2 Classification of dielectrics

The molecules of dielectric may be classified as polar and non —polar.

Non Polar Molecules

In an atom the negatively charged electrons are distributed around the positively charged nucleus
in such a way that the centre of electron cloud coincide with centre of nucleus. So in an atom
there is no separation of positive and negative charge. The atom there for has no dipole moment.
When two identical atoms combine to form a molecule, again there is no separation of negative
and positive charge. The molecule formed by two identical atoms does not possess dipole
moment. Such molecule are called non polar molecule and substance is made up of such
molecule are called non polar substances.

H;, N, Oy, CO,, CCly, CsHs, CsHip, CS,, etc. are some common example of non polar
molecules. In a molecule of CO,, the oxygen ions are symmetrically placedwith respect to the
carbon ion, hence net dipole moment is zero. Thus CO; is non polar molecule.

p=pi-p».=0 . 2)

CH+++

=00

Polar molecules
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When two electrons of different electro negativities combine to form a covalent bond the shared
electron pair is shifted towards the more electronegative atom as result of which a separation of
positive and negative charge takes place and the bond acquires a dipole moment. Such a bond is
called polar bond. If the polar bond in a molecule is symmetrically distributed, the resultant
dipole moment of various polar bonds comes out be to zero. Then the molecule is called non
polar. On the other hand if the polar bonds in a molecule are not symmetrically distributed, the
resultant dipole has finite value, then the molecule is polar.
HCL, CO, NHj3;, H,O, CHCL;, C¢Hs5Cl, C¢HsNO,, C,HsOH etc. are some common example of
polar molecules. In HCI molecule, the electron cloud is slightly shifted towards the more
electronegative atom Cl. The molecule is therefore, a dipole having dipole moment P directed
from Cl atom to the H atom similarly the co molecule is a dipole having a moment O to C atom.
In water molecule the two OH bonds are inclined at 104°. Because of higher electro negativity of
oxygen, the O-H bond acquires polarity with negative ends at the oxygen atom and the positive
at the hydrogen atom.
p=[pit+plt+2pipacosd]'? ... 3)
Where p; = p; is the dipole moment of one O-H bond and § = 104°

4.3.3 Polarization of dielectric

The phenomenon of polarization may be illustratedhere from elementary atomic view. When a
dielectric material is placed in electric field, the positive and negative charge of non polar
molecules or atoms experience electrostatic forces in opposite directions. Therefore the centres
of gravity of the two charges are separated from each other. The molecules thus acquire an
induced electric dipole moment in the direction of the field.

When an electric field is applied on polar molecules (permanent dipole), the forces on a dipole
give rise to a couple, whose effect is to orient the dipole along the direction of electric field. The
stronger field, the greater is the aligning effect. This alignment is however, incomplete due to the
thermal agitation of the molecule (the alignment become more and more perfect as the electric
field is increase or the temperature is decreased).Thus non polar molecules become induced
dipole whereas polar molecules are oriented by the field and therefore have their dipole
moments increased. The orientation of induced dipoles or of permanent dipoles in an external
electric field is such as to set the axis of dipoles along the field. This phenomenon is known as
electric polarization.

There is a main difference between these two mechanisms. The polarization of non-polar
molecule is independent of temperature. As polar molecule are undergoing thermal motion hence
are randomly oriented. Thus the polar molecule can aligned perfectly with the smallest external
electric field at about absolute zero.

4.3.4 Effect of Polarization on Electric Field within the dielectric
Suppose a slab of dielectric material is placed in the uniform electric field E, set up between the
parallel plates of a charge capacitor. The slab becomes electrically polarized i.e. its dipole are
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oriented in the direction of the field. The net effect is appearance of negative charge on one face
of the slab and an equal positive charge on opposite face. The polarization charges induced on
the two faces of the slab produces their own electric field E, which opposes the external field Ey
Hence the resultant field E within the dielectric is smaller than Egbut point as in same direction
as Ey (E= Ey - E’). The field in the rest of the free space is still Eg. Hence we conclude thatwhen
a dielectric is placed in an electric fieldthe field within the dielectric is weakened (but not
reduced to zero).

E, Gaussian Surface

11 ] | ] o s | R YTt b
S s i  H|] || | D) | |f
+[1- - 1+ ]||]-1 | - DI DIC N
- T | || D A M RS2 DI
1 | S e | R L 22l b
- HIIEEER I |- - DIICBICOINH
L 1 || I 1 S | B N AL DI ICP) )

ME |

< d » O free G bound ']
Figure 1

The charges within the polarised dielectric or those appearing at its surfaces are known as
fictious charges or bound charges or polarisation charges and the charges on the plates of
condenser are called free charges or real charges. If we assume that all the molecules are
polarised to the same extent then the bound charges within the main body of dielectric will
neutral one another because the negative side of one polarised molecule is adjacent to the
positive side of its neighbour. However at the surface of the dielectric, in contact with the plates,
the bound charges are not neutralised. This causes the field in the dielectric to become smaller
than in the free space.

4.4 ELECTRIC POLARIZATION VECTOR P

When a dielectric is placed in an electric field, its molecules become electric dipoles and the
dielectric is said to be electrically polarised. The state of polarisation is described by polarisation
vectorP, which is defined as the dipole moment per unit volume of dielectric material. The
polarisation vector is related to bound charges.
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- 'i‘ ! A
N , +
1= + -
i P 3 . e
TSI SR
Figure 2

Let us consider a slab of homogeneous isotropic dielectric material of thickness / and face area
A. Let it be placed perpendicular to a uniform electric field between the parallel plates of a
capacitor having free charges +q and —q. The slab is polarised. Let —¢’ and +¢’ be the bound
charges induced on its end faces (figure 2).

The induced electric dipole moment of the slab as a whole is ¢’/ and its volume is 4/. The
magnitude of the electric polarisation is, therefore,

_al_ 4
pP= TS L e 4
Now P may also be defined as the induced surface charge per unit area i.e., the surface density of

bound charges (o) in dielectric
P=c6, (5)

Thus for a homogeneous isotropic dielectric, the electric polarisation P is numerically equal to
the surface density of the induced charge appearing at the ends of dielectric block.

The unit of P is same as of charge density i.e., coulomb/m®. It is zero for vacuum. The direction
of P is from the negative induced charge —q’ to the positive induced charge +q’ as for any dipole.
Equation (5) can be generalised by considering the case when the dielectric surface is not to P
(figure 2). Let the normal to the surface plane XY makes an angle 6 with the direction of P.

Let o, be the surface charge of found charges. The dipole moment of the slab is 6,4/ and its

volume is (A cos0)/. The magnitude of polarisation vector is
— O'pAl
(Acos6)l
op=PcosO=Pn ... (6)

where n is a unit vector normal to the surface.
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4.5 FIELD OF A POLARIZED PIECE OF DEELECTRIC

If a dielectric is uniformly polarised, polarisation charges appear only at the surface. In case of
non-uniform polarisation charges also appear within the body of the dielectric. We have seen that
in case of uniform polarisation the surface density of polarisation charge is equal to the normal
component of polarisation vector. In what follows we shall see that in case of non-uniform
polarisation the volume density of polarisation charge is equal to the negative divergence of
polarisation vector.

Consider a volume element dt at point r’ (x , y, z ) inside the dielectric. The point of observation
P lies at point r (x, y, z ). The position vector of field point P relative to volume element
(source point) dt is r (=1 — r’). The dipole moment associated the volume element is Pdt, where

P is polarisation vector. The potential at point P due to charge in volume element is

do =Lﬂdr

4meg 13
Hence the potential of entire piece of polarized material is
1 Pr
(P = —

4meg Y 13
where the integration is to be performed over the volume occupied by the dielectric piece. The
above expression for potential can be written as

¢=- 4,380f P-(V-%) dt = . 7)
- e e PO
il =
/( s ‘li-x'__y\f_"',l 1_//
f "'\1 \ L
) | -
\ r \.‘j r//

Figure 3

4.6 POTENTIAL OF A PIECE OF POLARIZED DIELECTRIC

Here the operator V involves differentiation with respect to observer’s coordinates (x , y , z”)

Goid 54 i d
dx dy dz
We define
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Which involves differentiation with respect to source coordinates (x’, y’, z’). It can be shown
that

'

V=-V
Making use of this result we can write equation (7) as
_ 1 1
¢—4n80fP.(V.r)d1: ....... (8)

To transform equation (7) into more convenient from we make use of the following identity
V(pA) = Vo.A+ @V.A
To use this result we make the following replacement. A—P, ¢ — % . Doing so we obtain
1 ((P\ 1.y
PV = v(;)——v.P ....... 9)
In view of equation (9) we can write equation (8) as

b= 3l 7 ()10 Bl

4meg

1 , 1 (VP
:_fv;dT_EdeT ....... (10)

4meg

Transforming the first integral on the right hand side into surface integral by divergence theorem

we have

1 (Pn 1 VP
= — —dS-|——deT ....... (11)

4meg r 4meg

The first term on the right hand side of equation (11) looks like the potential due to a surface
charge distribution with surface charge density

ob=Pmn ... (12)
And the second term looks like the potential due to a volume charge distribution with volume
charge density

pp=—V.P . (13)
In terms of newly defined charge densities o, and py, the potential of the polarized dielectric is
_ 1 pmds 1 rpdr
e 1] — + p— | — (14)
Proof of result = -V

r —_ r,, _ r’ — (X” _ X’)i _|_ (y” _ y’)j _|_ (Z’ ,—Z,)k
r2 — (X” _ X,)z + (y” _ y’)z + (Z,,—Z’)Z

or " or x”_x’
= — _ L or _
2 ax’ 2(x X') P -
Similarl ar _ y-y and or _ Z'-z
Yo o= or_ 2

JOREOREXCRETI0

NOW r ax \r + ] oy \r + (=
1 0r . 1 9r. 1 or

-1 ; ;
r2 gx r2 dy J r2 9z
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1 x"—x" . 1 y"—y,. 12—z
— i+=—=j+ =—k
rz2 r rz2 r ) rz r

r

3

<

Hence V= -V

4.7 GAUSS’S LAW IN DIELECTRIC

The well known gauss’s law in electrostatics states that that electric flux through any closed
surface is equal to 1/ g times the net charge enclosed by the surface.

ke

-
I_"""""_I':“'_'I‘_ '

s I{ :Z.i-al.msian
Surtace
Figure 4
Let us consider a parallel plate capacitor with plate area A having vacuum between its plates
(figure 4) +q and —q be the charges on the plates of the capacitor and E, be the uniform electric
field between the plates. Let PQRS be a Gaussian surface. The electric flux through this surface

1S
_‘}g E,. dS,

where dS is a small vector area on the surface. The net charge enclosed by the surface is +q.
Therefore by Gauss’s law

But Eo.dS=Esd
“Egd=% (15)

€0

Or Eo =9
S()A

Now, let us apply this law to a parallel plate capacitor filled with a dielectric material of
dielectric constant K.

A negative charge —q’ is induced on one surface and an equal positive charge +q’ on the other.
These induced charges produce their own field which oppose the external magnetic field E,. Let
E be the resultant field within the dielectric. The net charge enclosed by the Gaussian surface
PQRS is now g-q . In this case, Gauss’s law gives

$Ep.dS=<L . (16)
€0

Page 87



BSCPCH102 ELECTRICITY AND MAGNETISM

Or E4 =12
€0
E% ....... (17)
We know that £-1
Eo K
Or Ey=EK
- -
§ [
o
] |
]y ¢
P .
t+ -1 B
:+
n= |
i 1 ) t )
§ e
Ganssian Surface
Figure 5§

Putting this value of E) in equation (15), we have

Ey=

KepA
Inserting it in equation (17), we have
a__a-q
KegA KegpA
or
v=q(1-3) .. (18)

This equation shows that the induced surface charge q’ is always less than free charge ¢ and is
zero when K = 1 or the dielectric is not present.

From equation (18) we find thatq—q’ = %.

Substituting this value of equation (17), The Gauss’s law in presence of dielectric takes the
following form

flEds =L
80
orff|[KEas=L L. (19)
80

We note that while using this form of Gauss’s law, the charge ¢ contained within the Gaussian
surface is taken to be ‘free’ charge only. The induced charge ¢ " has been taken into account by
the introduction of K on left hand side.

4.8 TERMINAL QUESTIONS
4.8.1 Long type Questions:

1. Differentiate between polar and non-polar molecules. Explain polarisation in them.
2. Differentiate between electronic, ionic and orientational polarisability.
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What do you understand by dielectric polarisation? Explain partial and complete
polarisation.

Deduce Gauss’s Law in dielectrics.

Explain the effect of Polarization on electric field within the dielectric.

4.8.2 Short type Questions:

Nk wh =

What is a dielectric? Give some examples.
What is dielectric constant?

Explain polar molecules.

Explain Non-polar molecules.

What is electric Polarisation of Vector P?
Explain Gauss’s Law in Dielectrics.

Explain Field of a Polarized piece of Dielectric.

4.8.3 Objective type Questions:

1.

Which one of the following substances is dielectric:

(a) Copper (b) Mica (c) Germanium (d) Tungsten
CO, molecules is:

(a) Polar  (b) Non-Polar  (c) Natural  (d) Basic

HC/ molecule is :

(a) Polar  (b) Non-Polar  (c) Neutral (d) Conductor
Centres of positive and negative charges are not coincident in :
(a) 0, (b) N> (C) CO, (d) NH;

Polar molecule is:

(a) (0)) (b) N, (C) H, (d) H,O

Non-Polar molecule is:

(a) H.O (b) CCly (c) CHCl;  (d) H.O

Following is not a dielectric:

(a) Wax (b) Mercury  (c) Glass (d) Mica

Unit of Polarisation vector P is:

(b) Coulomb  (b) Coulomb metre (c) Coulomb/metre” (d) Newton/coulomb

4.9 ANSWERS

Objective type Questions:
(b) 2.(b) 3.(c) 4.(c) 5.(d) 6.(b) 7.(b) 8.(c)

4.10 REFERENCES

1.
2.

P.Van Musschen Broek, Introduction Philosophion Naturalem, Luchtman, Leiden (1762).
M.Faraday, Phil. Trans 128:1 79 265 (1837).
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5.1 INTRODUCTION

In this Unit we have discussed three electric vectors (electric fields strength, electric polarization
and electric displacement vectors), restatement of Gauss’s law, dielectric strengths and concept
of capacitance in details.

5.2 OBJECTIVE

The Main objectives of the present unit are:
(1) To define three electric vectors
(i1) To define Restatement of Gauss’s Law
(i11) To define capacitors
(iv) To define Dielectric constant and their strength
(v) To define combination of capacitors and their types
(vi) To define Energy stored in a capacitor

5.3 ELECTRIC FIELD STRENGTH E

The electric field strength at any point in an electric field is defined as the force experienced per
unit infinitesimal positive charge (qg). If F is the force on small charge qo, then

) . F
1.e. E= lim —
q0-04q0

The direction of E is along the direction of force. The unit of E is Newton/coulomb or volt/metre.

5.4 ELECTRIC POLARIZATION P

When a dielectric is placed in an external electric field, its molecules gain electric dipole moment
and dielectric is said to be polarised. The electric dipole moment induced per unit volume of the
dielectric material is called the electric polarisation of the dielectric. It is denoted by a vector P.
If o, is the surface charge densities of fictitious charges appearing at the end faces of a dielectric
block, then P= o,

The unit of polarisation is coulomb/metre?.

5.5 ELECTRIC DISPLACEMENT VECTOR b

Let o be the surface density of free charges on the capacitor plates and ¢’ of the bound charges
on the dielectric. The magnitude of the electric fields due to ¢ and 6’ are

c o’
Eoy=— and £’ =—
€0 €0

The magnitude of the resultant field within the dielectric is therefore,
E=Ey-E’ (the fields are oppositely directed)
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Or

E= 0/80 — G’/So

Or

gfk=0-0¢’

Or

c=¢gE+o (1)

The last term of above equation (c’) is the induced charge density which is equal to the
magnitude of electric polarisation P. So the above equation may be written as
c=gEL+P L. (2)

The quantity on the right hand side of above equation is known as electric displacement D.
Thus

D=gE+P ... 3)
From above two equations we find
D=c 4)

Since E and P are vectors, D is also a vector. This displacement vector is an important addition
which is of great use is Maxwell’s electromagnetic equation to explain displacement current. In
vector form equation (3) becomes

D=gE+P ... 5)

5.6 THREE ELECTRIC VECTORS

E, P and D are three electric vectors related to each other as shown in equation 5. These vectors
may vary in magnitude and direction from point to point in complicated problems of
electrostatics. But in simple case of a parallel plate capacitor filled with dielectric, each of three
has a constant value or every point in the dielectric.

From the definition of D, P and E, we note the following-

(1) D is connected with the free charge only. The displacement field can be represented by
lines of displacement just as electric field is represented by lines of force. The lines of D
begin and end on the free charges (figure 1).

?2) P is connected with the induced surface charge or polarisation charge only. It can also be
represented by lines known as lines of P. These lines begin and end on the polarisation
charges i.e., induced charges due to polarisation. The flux of P equals the negative of the
bound (induced) charge. Clearly P is zero except inside the dielectric.

A3) The electric field intensity E is connected with the charge actually presents (free and
bound charge). The lines of £ depend upon the presence of both kinds of charges.

“) Unlike the electric field E and the polarisation P, the electric displacement D has no clear
physical meaning. The only reason for introducing it is that it enables one to calculate the
electric field in the presence of dielectric without knowing the distribution of polarisation
charges. The introduction of D is a convenience and not a necessity.
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5) The unit of E is Newton/Coulomb while that of P and D is Coulomb/meter”.

[+ + + + =+ r+ |
TG TR
+ + h+ =1;. I.- !-r- - 1+

1§11

e )

S

Figurel

5.6.1 D and P in terms of E

The vectors D and P can both be expressed in terms of E alone.

We know that Ey=o0/g and D=0 ... (see equation 4)
Ey=Dlg or D=¢E, ... (6)
Also E~= KE or D=K¢giE....... (7

Equation (6) and (7) also show that the displacement D has the same value in the dielectric and
in vacuum (where K = 1, E = E). Hence the use of D is more convenient rather than E.

Similarly we can also write a relation between P and E.
Equation (2) gives P=c-gFE
But we have seen above that

D=0=KgkE
P =K¢goE- eoE
or P=(K-1)¢gE

This clearly shows that in vacuum (K = 1), the polarisation P is zero.

5.7 RESTATEMENT OF GAUSS”S LAW

The Gauss’s law in presence of dielectric has the following form
|
LSﬁKE.dS = g—OjV pdV

where V is the volume enclosed by the surface S.

But the relation D = KegFEallows us to write the Gauss’s law in another form
$D.dS=q=[pdV ... (®)

Where q represents the free charge only, this tells us that the surface integral of the normal
component of D over a closed surface equals the free charge enclosed by the surface.
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Transforming the surface integral into volume integral using divergence theorem we have
Ivdiv D av =y pdV

Or [y (divD-ppdV =0

Since V is arbitrary, we have
Div D = p, or Vv.D=p, ... 9

This is Gauss’s law in differential form in a dielectric.

5.8 CONCEPT OF CAPACITANCE

When water is poured in a vessel, the level of the water in the vessel rises. When heat is given to
a conductor, the temperature (i.e.,thermal level) of conductor increases. In the same way when
electrical charge is given to a conductor, its electrical potential (i.e.electrical level) increases. It is
observed that the increase in potential (V) of conductor is directly proportional to charge (Q)
given to it,i.e.,

VaQ
Or QuaV
Or Q=Ccv (10)

Where C is a constant for a given conductor and depends on the shape and size of the conductor,
the surrounding medium and the presence of the other neighbouring conductors. This constant is
called the capacitance of the conductor.
Form the equ (10),

c=Qv (11)

i.e, the capacitance of the conductor is the ratio of the charge given to and rise in potential of the
conductor.

If V=1 volt,C=Q,i.e., the capacitance of the conductor is numerically equal to the charge required
to be given to conductor which raises its potential level by 1 volt.

In SI system the unit of capacitance is coulomb/volt, called the farad (F).

__1coulomb

1.€. 1 farad =
1volt

Thus, the capacitance of conductor is 1 Farad if 1 coulomb of charge raises its potential by 1
volt.

In practice farad is a very big unit, therefore usual units used are micro farad(uF) and picofarad
(pF)

1uF=10°F

and 1 pF=lppF=10"*F

When water is poured in a vessel continuously, we observe that initially level of water in the
vessel rises, then vessel is completely filled and finally water begins to flow out. In the same way
when charge is given to the conductor continuously, its potential rises, becomes maximum and
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finally when insulation capacity of the surrounding medium vanishes, the charge begins to leakin
the medium. Thus a given conductor in a given medium cannot attain the amount of charge more
than a definite maximum amount of charge. This definite maximum charge is determined by
capacitance of conductor. Thus the capacitance conductor is its capacity of collecting the charge.
Dimensions of capacitance:
Capacitance C= Charge (Q)/Potential (V)
As charge =current x time
So dimensions of charge, Q= [AT]
Potential, V=Work (W)/Charge (Q)
[ML*T?]
Dimensions of potential V= ——————— =[ML’T~A™]
[AT]

Dimensions of charge (Q) [A T]

©)= =
Dimensions of potential (V) [ML*T?A™]

So Dimensions of capacitance =[M'L>T*A’]

5.8.1 Capacitance of an isolated spherical conductor

Suppose aninsulated spherical conductor of radius R is placed in air. The word isolated implies
that there is no other conductor near by the sphere. Suppose a charge +Q Coulomb is given to
spherical conductor. As charge given to a conductor spreads on its outer surface such that the
potential on each point of conductor becomes ‘same’. Thus, the surface of sphere becomes
equipotential surface. As the electric lines of force are always perpendicular to equipotential
surface; therefore, the electric lines of force emerge normally from the surface of sphere; and
they appear to come from centre O radially outward. Consequently to determine the effect of
charged sphere; at the surface points and external points, we can assume that the whole charge
(Q) given to sphere may be supposed to be concentrated at its centre. Hence assuming charge (+
Q) situated at centre O of sphere, the potential at the surface of sphere,

A
+Q

* R

+.- \\/_‘_

% - ) \.

*+— > S

| - R .: +

N ‘/‘

g T PN
#* i Y

Figure 2
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v=—0Q/R

4-T[80

1
Where o =9.0x 10° newton-meter*/coulomb’
0

Capacitance of isolated sphere

Q Q
C:— :W

v (471:50 R))

C=4n€,R (12)

If R is in meter, C is in Farad,then

CaR

Clearly,capacitance of a spherical conductor is directly proportional to its radius.
Co

Remark: From (12), o=
4nR

From this expression,the unit of permittivity of free space is farad/meter.
From the Coulomb’s law of electrostatic force

1 .
F= quqz/r2 ; the unit of g coulomb?/newton-meter™
0

Thus, farad/meter and coulomb”/newton-meter” units of same physical quantitye,.

Example 1: If 10 microcoulomb charge given to a conductor increases its potential by 2.5
volt. What is the capacitance of the conductor?
Solution: Here Q=10 pC = 10x10"° coulomb, V=2.5 volt

Capacitance ng

=10x10"%/2.5
=4.0x10" farad
=4.0 uF
Example 2: Assuming the earth be a spherical conductor of radius 6400 km, calculate its
capacitance.
Solution: The capacitance of a spherical conductor in air
C=4neoR
4mey = 1/9x10° C*/N-m’
R=6400x10’m
C= 6.4x10°/9x10° =7.11x10™*F
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5.8.2 Parallel Plate Capacitor with Dielectric

It consist of two plate metallic plates A and B,placed parallel to each other .The plate may be of
any shape,e.g., circular ,square and rectangular. The plates must be similar and at small
separation. The plates carry equal and opposite charge +Q and —Q respectively.For this the plate
is given a charge +Q and outer surface of plate B is earthed. When charge Q is given to plate
A.the charge (-Q)is induced at inner surface of plate B and charge (+Q) at outer surface as outer
surface of plate B is earthed,its charge (+Q) is transferred to earth. Thus the net charge on plate
A 1s —Q and on the plate B it is (-Q).

+Q .
Ai + s =]
+ - |
-+ S
i (T, e
.'. EE— -
+ _]g‘L_,, =
b I:L" s | =

Figure 3
In general the electric field between the plates due the charges +Q and -Q remains uniform, but
at edges,the electric lines of the force deviate outward. If separation between the plates is much
smaller than the size of the plates,the electric field strength between the plates may be assumed
uniform.
Suppose A is the area of each plate, d the separation between the plates,K the dielectric constant
of the medium filled between the plates. If ¢ is the magnitude of charge density of plates,then
o=0/4
The electric field strength between the plates
E=06/KE€ 0
Where €, =permittivity of free space.
The potential difference between the plates
VAB:Ed:Gd/K Eo ....... (13)
Putting the value of o, we get
Ay
Capacitance of capacitor

C=Q/Vap=Q/(Qd/K €A)
c_keoa (14)
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This expression for the capacitance for the parallel plate capacitor, clearly the capacitance of a
parallel plate capacitor is

(1) Directly proportional to the area of each plate.

(11) Directly proportional to the dielectric constant (or permittivity)of the medium.

(i11))  Inversely proportional to the distance between the plates.

(iv)  Independent of metal of plates.

Thus for high capacitance of a parallel plate capacitor.

(1) Area(A) of the plates should be large

(1))  The separation(d) between the plates should be small

(i11))  The medium between the plates should be of high electric constant (K).

5.9 DIELECTRIC CONSTANT

If medium between the plates be air (or vacuum); then K=1,therefore capacitance of air capacitor
€0A

C() = T ...... (1 5)
Dividing equation(14) by (15)
c
—=K
co
OrC =k .. (16)

This shows that medium of dielectric constant K is introduced between plates of parallel plate
capacitor,the capacitance of the capacitor increases K-times.

From the equation(16), the dielectric constant of the medium may be define as the ratio of
capacitance of the capacitor filled with medium to the capacitance of the same capacitor filled
with the vacuum (or air).

5.10 INCREASE OF CAPACITANCE WITH IN THE
DIELECTRIC MEDIUN

Suppose a dielectric medium is filled between the plates of the parallel plate capacitor.Every
matter is constituted of molecules or atoms. In an atom positive charge is concentrated at the
nucleus and the negatively charged electrons revolve around the nucleus in orbits. In dielectric
medium the electron are strongly bound to the nucleus and in general the centre of positive and
negative charges in each atom/ molecules coincide. When capacitor is charged, an electric field
is established between the plates of the capacitor. Due to this electric field, the centres of positive
charges are displaced along the direction of electric field or towards plate B; while the centres of
negative charges are displaced opposite to the direction of electric field or towards the plate A.
Thus the centres positive and negatively charges of each molecules/atom are displaced and
molecule is said to be polarized. This causes an electric field E; between the dielectric
medium,which is opposite to direction of electric field produced due to charges on the plates.
Thus,due to presence of dielectric medium,the resultant electric field between the plates is
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reduced and hence the potential difference (V=Ed) across the plates is reduced. Consequently the
capacitance of capacitor (C=Q/V sp) is increased.

00000

] +
¥ + + + £ .5

Figure 3

5.11 DIELECTRIC STRENGTH

When potential difference between the plates of capacitor is increased continuously the electric
field between capacitor plates will go on increasing and consequently the separation between
positive and negative charges will go on increasing and a stage will come when the opposite
charges of molecule will break off from molecule and become free. In this situation the dielectric
willnot remain insulating conductor. As a result capacitor will be discharged.

The minimum electric field strength applied to dielectric at which its electric breakdown takes
place is called the dielectric strength. In other words, “The dielectric strength of a dielectricis the
maximum electric field that it can withstand without breakdown of its insulation property”. It is
constant for a given dielectric. The minimum value of potential difference across capacitor plates
at which dielectric breaks down is called the breaking potential difference. It is to be noted that
dielectric strength for a material remains fixed,but the breaking potential depend on the thickness
of dielectric, i.e.

Breaking potential difference =dielectric strength x thickness.

The dielectric strength of the vacuum is infinity,for air it is 3 x 10°V/m,for plastic it is 10’V/m
and for mica it is 1.6 x 10°V/m.
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5.12 PARALLEL PLATE CAPACITOR WITH A DIELECTRIC

Consider a parallel plate capacitor, area of each plate being A, the separation between the plates
being d. Let a dielectric slab of dielectric constant K and thickness t< d be placed between the
plates. Thickness of air between the plates = (d-t). If charge on plates be +Q and —Q, then surface
charge density

+Q —Q

AT 7 /% - =

Figure 5
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The electric field between the plates in slab
_o_¢@
y=—

Ke0 Ke0A
The potential difference between the plates

Vap= Work done in carrying unit positive charge from one plate to another
= XEx (as field between the plates is not constant)

_ _Q 4 Q
= By(d-t)tEat = (d-t) + ——t

Q t
Vg = ﬁ[ d-t+ ;]

. . _Q _ Q
Capacitance capacitor, C = VAB o § (17)
€0A k
£0A . €0A

[d-t+5] d-t(—3
This is the required expression. As K> 1, it is obvious that due to introduction of slab of
thickness t and dielectric constant K between the plates of a parallel plate capacitor, the effective

distance in air is reduced by (I'E)t ; and so the capacitance of capacitor increases.

5.13 FORCE BETWEEN PLATES OF A CHARGED PARALLEL
PLATE CAPACITOR

The plates of the parallel plate capacitor are oppositely charged, hence each plate must
experience force of attraction.

Consider parallel plate capacitor of plate area A and separation between the plates d. Each
charged plate produces an electric field and the other plates are placed in the vicinity of this
electric field. Let Q be the charge and o the surface charge density on each plate. Clearly

ki
O

The electric field produced due to either charged plates,
E - Py

Because charge on plate is accumulated on one side, Due to this electric field,the force of
attraction on other plate =QE,
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- oo (using(18) L (19)
If E is the electric field between the plates, then
- 2
0
or
c=¢E . (20)

So Force of attraction between the plates

F~(/2QE| ... 1)

This is required expression .The factor '2 appears because the electric field in the vicinity of
charge Q is produced by one plate only,so
E=12E.

-9 Q2 ~
Ifweput E= &~ A.o\h equation (21),we get

F=-2_ 122

5.14 COMBINATION OF THE CAPACITORS

If the capacitor of required capacitance is not available,then the two and more capacitors may be
combined to provide the required capacitance.There are two main method of combination.

1. Series combination

The reduced the capacitance,the capacitors are connected in series. In this combination the first
plate of first capacitor is connect to first plate of second capacitor,the second plate of second
capacitor is connected to first plate to third plate capacitor and so on ;the second plate of last
capacitor is connected to the earth.In fig.6 three capacitors of capacitance C;,C,,C; are connected
in series between point A and D.

Suppose by means of electric source a charge +Q is given to first plate of first capacitor C1. By
induction —Q charge is induced on the inner surface of second plate of first capacitor and a +Q on
inner surface of first plate of second capacitor Cand so on (fig 6).Thus first plate of each
capacitor has charge +Q and second plate of each capacitor has charge —Q.

Let the potential difference across the capacitor C;,C,,Cs be V1,V2, V3 respectively. As the second
plate of first capacitor C; and first plate of second capacitor C, are connected together, therefore
their potentials are equal. Let this common potential be V. Similarly the common potential of
second plate of C, and first plate of Cs is V.. The second plate of capacitor C; is connected to the
earth,therefore its potential Vp =0. As charge flows from higher potential to lower
potential,therefore Vo>Vg>V>Vp.
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For the first capacitor V| = VA-Vg = % ....... (23)
For the second capacitor V, = Vg- V.= (?—2 ....... (24)
For the third capacitor V3 =V.,— Vp = 5—3 ....... (25)
+Q Q Q Q a5 'T,
14 i IR ;
. |I- : C |||!1+ —=|'.| D
‘? : Cy _ l: il 1| Cz H - |l Cs | | i
E: + (| . | | b | | |
ST s - E— |
< (L= =11 | e =3 e "ll C
. T -V, - Wy
- - — v — e -
(a)

(b)

Figure6

Adding equations (23),(24) and (25),we get

V1+V2+V3 :VA—VD = [1/C1+1/C2+1/C3]

If V be the potential difference between A and D, then

VA - VD =V
From (26) we get

V= (Vi+V2+V3) = Q [1/C;+1/Cy+1/Cs]

Three capacitor, only one capacitor placed between A and D such that on given in charge Q,the
potential difference between its plates become V , then it will be called equivalent capacitor.If its

capacitance be C then

Q

=2 L (28)

Comparing equation (27) and (28), we get
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= Q[U/CH+1/Cy+1/C5]  or 1/C=1/Ci+1/Cyr1/C5 ... (29)

Ol

(1) Thus in series arrangement, “the reciprocal of equivalent capacitance is equal to the sum of
reciprocal of the individual capacitor”. Infact the equivalent capacitance is even less than the
lowest capacitance in series.

(i1) The charge of each capacitor is same.

(111)The total potential difference applied across the combination is equal to the sum of potential
difference across the individual -capacitors,i.e.,V=V+V,+V;. Therefore the series
arrangement is used to divide a high voltage (which cannot be tolerated by single
capacitor)among several capacitors.

Remarks: If n capacitors of capacitance C;, C,, C3, ------------ C, are connected in series,the net
capacitance C will be given by

1 1 1 1 1

—=— et —t— = +—

c G C C C,

2. Parallel Arrangement: To increase the capacitance,the capacitors are connected in parallel
in this combination the first plate of each capacitor is connect to a common point A and
second plate to another common point B. The point A is connected to electric source and
point B is connected to earth. In figure 7 three capacitors of capacitance C;,C,,Cs are
connected in parallel.

"y iy
r

R
f‘/ *
% ' Q =

= A 1] 4 G = |"
Q ! [

K A + = B

\ |+ -

: 1

1 _

\ o i + !l E

- % 1 7

(a) {b)

Figure7

Let a charge Q be given to point A by means of an electric source. The first plate of each
capacitor will be at potential A and second plate will be at zero potential, because it is connected
to each other. Clearly the potential difference between the plates of each capacitors.

VA - VB = VA = V(say)
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The charge Q will be divided on capacitors C;, C,, C3 .
The charge q, q2, qsbe the charge on capacitors C;,C,,Cs respectively.

Q=qitqxtqs L (30)
q:=C1V, q2=C,V, qz=C;V

Substituting these values in (30), we get
Q=C,v+C,v+Cv €2))

If, in place all three capacitors,only one capacitor of capacitance C be connected between A and
B;such that on giving it charge Q,the potential difference between its plates be V,then it will be
called equivalent capacitor.
If C be the capacitance of equivalent capacitor, then

Q=¢cv. (32)
Comparing equations (31) and (32), we get

CV= (C+Cy+C3)V

C=C+CtCs (33)

Thus in parallel arrangement
(1) The equivalent capacitance is equal to the sum of capacitances of individual
capacitors (C= C;+Cy+Cs).
(11) The total charge is equal to the sum of charges onindividualcapacitors
(Q=qrtqx+qa).
(iii)  The potential difference across each capacitor is same .

Remarks: If n-capacitors of capacitance C;,C,,C3------- C, be connected in parallel, the net
capacitance
C:C1+C2+C3+ ——————————— +Cn

5.15 SPHERICAL CAPACITOR

Aspherical capacitor consists of two concentric metallic spheres.A and B of radii a and b
respectively (b>a) insulated from each other by dielectric of permittivity €.  Let us find the
capacitance of spherical capacitor in the following cases.

Case (i).When the sphere is earthed. If the inner sphere A be given a charge +Q,then a charge
—Q will be induced on the inner surface of the sphere B and a charge +Q on the outer surface of
outer sphere. As the sphere is earthed,the charge +Q induced on the outer surface of outer sphere
B will flow to the earth.
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Now the electric field strength at a point P distant r from the centre O and within the concentric
spheres is entirely due to the charge +Q on the inner sphere and is given by

1 Q

41e0 r2

Where r is the unit vector along OP
The potential difference between two sphere is then,given by

_ra o a1l @
V—-fb E.dr=— fb E.ET’A.dT

If K is dielectric constant of medium,then € =K &,
From which the capacitance of spherical capacitor is given by

- Q Q _4mKe0  4mKe0 ab
4mtKeola b a b a b

C=4mKs0 22
b—a

Case (ii). When inner surface is earthed: If charge +Q be given to the outer spherical shell B
of innerand outerradii b and c respectively,the charge +Q is distributed into two parts (i) charge
+Q; spreads on the inner surface of radius b and (ii) charge +Qq spreads on the outer surface of
radius c such that
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Q=QitQo

Due to induction the Charge —Qi is induced on the inner sphere is earthed,the inner sphere is at

zero potential.
If the surrounding objects are at infinite distance from the outer sphere and at zero potential, also

if the medium between the outer sphere and infinity of permittivity &, the electric field strength at
a point for which

Figure 9

r>cis
= 1 O .
E, = =7 34

" dne, 4
and electric field strength at a point for which a<r<b is
E = L% o (35)

drg, r

As the potential at infinity and also that of inner sphere is zero,the potential of outer shell may be

written as

V=-["Ey.dr=——["%¢ ar

41re0 Y0 12
_ Qo 01 _ 1 Q
= =[ Zdr=—= .. (36)
Wehave V=222 37)
4me Lla b

Comparing equation (36) and (37), we have

1 Q _ &[i_l]
4me0” ¢ ansla b
Q _ Kab
% . b_a....(38)

As the total charge given to the shell B is Q=Q¢+Qj;, the capacitance of the arrangement is given

by
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_ Qo+q; _ Qo+
T
4me0’ C

C =4meyc [1 + g—(’;]

= 4n€oc[1 + %.%] from equation (38)
= dnEctngK (39)

If the outer sphere is surround by concentric earthed sphere of radius d, then capacitance of the
system may be calculated by similar procedure,keeping d in place of oo in the integral of eq. (36)
this result is

C= dn€K-m+4n€ = L (40)

5.16 CYLINDRICAL CAPACITOR

The cylindrical capacitor consists of a long metal cylinder A of radius a surrounded by an
earthed metallic concentric cylindrical shell B of inner radius b. The space between the two
cylinders is small in comparison with their lengths and is filled with a dielectric of permittivity «.
If the charge +Q is given to the inner cylinder,then an equal charge —Q is induced on inner
surface of outer cylinder and a charge +Q on the out surface of the outer cylinder. As the outer
cylinder is earthed,the charge +Q induced on the outer surface of outer cylinder flows to earth. If
the length / of the two cylinders is large compared with separation (b-a),the charge Q can be
considered to be distributed uniformly over the two cylinders. The charge per unit length is thus

A==,
The electric field strength at a point P in the space between the two cylinders at a distance r from

the axis is entirely due to charge +Qon the inner cylinder and is directed radially away. It is
given by

LN
Amer

The potential difference between the outer and inner cylinders i.e., the potential of the inner
cylinder is now given by

V=-['E.dr =-[! =

Amer

r.dr

Ak a1
4me’b r

S loge2

4me a
The capacitance per unit length of cylindrical capacitor is given by so
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chargeperunitlength

potentialdif frencebetweentwocylinder

o T (42)

loge2  log.2
ame 08ey 08eg

If K is dielectric constant of medium between the places, thené =€K

_ 2mE0K

b
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Figure 10

The capacity of the cylindrical conductor of the length 1 is , therefore, given by

2mEOKI
Cl = b
lOgeE

This type of cylinder is of great practical importance. For example,coaxial cables consist of
cylindrical metal shield a coaxial central conductor and an interposed dielectric. These are
widely used in the transmission of high frequency signals. In their usethecapacitance introduced
by them is taken into account.

A submarine cable is also an example of cylindrical conductor. The copper cable forms the inner
cylinder and sea water works as outer earthed cylinder. The insulating material plays the role of
the dielectric between two cylinders. The capacitance per unit length of the submarine cable and
co-axial cables is given by equation (42).
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5.17 ENERGY STORED IN A CAPACITTOR

Let us consider a capacitor of capacitance C which is given total charge Q coulombs in small
instalments. Suppose during the process of charging, the charge at any instant on the capacitor is

q. At this instant the potential difference between the plates of the capacitor is V:%. If a further

charge dq is given to the capacitor,the work will have to be done against this potential difference.
This work done is

dW =v.dq Z%dq [sincev = %]
Therefore the total amount of work done in charging the capacitor from charge 0 to Q coulombs
is

Q 114219 Q2 .
W=/, %dq :E[q?] e joules (44)

If v is potential difference between the plates of the capacitor when it has charge Q, then

Q=CV
2
w=C2 =ZevZoules L. (45)

This is energy stored in the capacitor .This energy resides in the dielectric.
For a parallel plate capacitor having area of each plates A,separation between the plates d and the
medium between the plates of permittivity €

Capacitance C= %A; and electric field strength,Ezg

So that
<2 Ep-%a . (46)
Therefore the energy stored per unit volume in the electric field of strength E
W= %2 joules/meter’ _EOKE? Jm™3 ... 47)
5.18 Terminal Questions
Long type Questions:
1. What do you understand by dielectric polarisation? Explain the electric field vector E,

Electric polarisation vector P and Electric displacement vector D in a dielectric material
and deduce a relation between them.

2. Define displacement vector D and deduce relation between D and E.

3. Deduce relation D = €0E for dielectric material filled in parallel plate condenser.

4. Derive an expression for the capacity of a parallel plate capacitor with space between the
plates partly filled with of dielectric substance.

5. Derive an expression for the energy stored by a charged capacitor.
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Short type Questions:

1. What is dielectric? Give some examples.

2. Define electric polarisation vector P and displacement vector D.

3. What is the relation between vector P and vector E? What is unit of vector P?

4, Differentiate between vector D, E and P.

5. Write an expression for the capacitance of a parallel plate capacitor. On what factors does

it depend?

Objective type Questions:

1. Unit of Polarisation vector Pis:

(a) Coulomb (b) Coulomb metre (c) Coulomb/metre-2 (d) Newton/Coulomb

2. Unit of Displacement vector Dis:

(a) Coulomb  (b) Coulomb- metre (c) Coulomb/metre™ (d) Coulomb/metre?

3. Displacement vector D depends upon:

(a) Charge (b) Medium  (c) Dielectric ~ (d) None of above

4. Relation between Vector P and Vector E:

(a) P=yEeOE (b)P=¢0KE (c)P=%EE (d)P=(yE-1)E

5. The relation between the three electric vectors E, D and P is:

(a) D=P+E (b)D=P/E (c) D=¢E+P (d)D=¢(E+P)

6. When a dielectric is introduced between the plates of a parallel plate air capacitor, its
capacitance:

(a) Decreases (b) increases (c) remains unchanged

(d) may decrease or increase depending on the nature of dielectric

5.19 Answers
1. (c) 2. (d) 3.(c) 4. (a) 5.(c) 6. (b)

5.20 SUGGESTED READINGS

1. Electricity & Magnetism, D.C. Tayal, Himalaya publishing House
2. Electricity, Magnetism and Electronics, S.I. Ahmad and K.C. Lal,
Unitech House, Lucknow
3. Fundamental of Electricity and Magnetism,R.G. Mendiratta and B.K.Sawhney, East-West
Press Pvt Ltd
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UNIT 6 MAGNETIC MATERIALS, MAGNETIC
SUSCEPTIBILITY, HYSTERESIS LOOP

Structure

6.1 Introduction
6.2 Objectives
6.3 Electric Susceptibility
6.4 Relation Between Dielectric Constant and Dielectric Susceptibility
6.5 Permittivity
6.6 Microscopic view of polarization
6.7 Kinds of polarizability
6.7.1 Electronic polarizability
6.7.2 Ionic polarizability
6.7.3 Orientational polarizability
6.8 Molecular Field or Lorentz Local Field in a Dielectric
6.9 Clausius — Mossotti Equation
6.10 Debye Equation or Langevin-Debye Theory of Polarisation in Polar Dielectrics
6.11 Behaviour of Dielectric Material in an Alternating Electric Field: Complex Dielectric
Constant
6.12Terminal Questions
6.13Answers
6.14 References
6.15 Suggested books

Page 113



BSCPCH102 ELECTRICITY AND MAGNETISM

6.1 INTRODUCTION

Mossotti and Clausius have done a systematic investigation about the dielectric properties of
materials. They attempted to correlate the specific inductive capacity, a macroscopic
characteristic of the insulator introduced by Faraday which is now popularly termed as dielectric
constant with the microscopic structure of the material. Following Faraday in considering the
dielectrics to be composed of conducting spheres in a non-conducting medium, Clausius and
Mossotti succeeded in deriving a relation between the real part of the dielectric constantand the
volume fraction occupied by the conducting particles in the dielectric.

In the beginning of 20m century, Debye realized that some molecules had permanent electric
dipole moments associated with them, and this molecular dipole moment is responsible for the
macroscopic dielectric properties of such materials. Debye succeeded in extending the Clausius -
Mossotti theory to take into account the permanent moments of the molecules, which allowed
him and others to calculate the molecular dipole moment from the measurement of dielectric
constant. His theory was later extended by Onsager and Kirkwood and is in excellent agreement
with experimental results for most of the polar liquids. Debye’s other major contribution to the
theory of dielectrics is his application of the concept of molecular permanent dipole moment to
explain the anomalous dispersion of the dielectric constant observed by Drude. For an alternating
field, Debye deduced that the time lag between the average orientation of moments and the field
becomes noticeable when the frequency of the field is within the same order of magnitude as the
reciprocal relaxation time. This way the molecular relaxation process leads to the macroscopic
phenomena of dielectric relaxation, i.e., the anomalous dispersion of the dielectric constant and
the accompanying absorption of electromagnetic energy over certain range of frequencies.

6.2 OBJECTIVE

The Main objectives of the present unit are-
e To define the electric susceptibility
e To define the permittivity
e To define the Polarizability and their types
e To define about Claussius —Mossotti Equation
e To Explain Debye Equation or Langevin-Debye Theory of Polarisation in Polar
Dielectrics
e Behaviour of dielectric material in an alternating electric field

6.3 ELECTRIC SUSCEPTIVILITY

When a dielectric material is placed in an electric field, it becomes electrically polarised. In most
cases i.e. for isotopic dielectrics (whose electrical properties are identical in all directions), the
degree of polarisation P is found to be proportional to the intensity of electric field E at a given
point of dielectric provided the field is not very strong.
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Px E
P=yE . (1)
P=¢g XﬁE ....... (2)

The constant . 1is called the electric susceptibility of the dielectric material and vector E is the
electric field within the dielectric.

The total proportionality factor & y = y. 1s known as absolute susceptibility or dielectric
susceptibility.

The electric susceptibility of a dielectric may be defined as the ratio of the polarisation to the
electric intensity in the dielectric. Since polarisation P equals the surface density of induced
charge, the susceptibility may also be defined as the ratio of induced charge density to the
electric intensity.

Hence the units of susceptibility are those of surface density divided by electric intensity
P Coulomb/m?2

X~ E0 X E Newton/Coulomb 7% Q)
% = Coulomb” / Newton-meter”

AlsoFarad = Coulomb? / Newton-meter

[+ volt = Newton%and Farad = Coul./Volt]

__ Farad

meter
It value for vacuum is zero. The polarization of dielectrics whose molecules are permanent

dipoles depend on temperature. Hence such dielectrics show a dependence of susceptibility on
temperature while non-polar dielectrics do not.

6.4 RELATION BETWEEN DIELECTRIC CONSTANT AND
DIELECTRIC SUSCEPTIVILITY

We have following two equations
P=(K-1)&E
and P=y¢kE
Hence by comparison of above two equations, we can write
x=(K-1) or K=y+1 ... %)
Equation (3) can also be written in another form by using relation x = ./ &
K=1+%2 .. (6)

€0

The value of K for all dielectrics is greater than one. Since for empty space Y, is zero, the value
of Kis 1.
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6.5S PERMITTIVITY

We have D=K¢gFE

The product K g is called permittivity of the dielectric and is represented by ¢ that is
e=Keg (7

in empty space K = 1, so that & = g The quantity g is therefore correctly described as
‘permittivity of empty space’.
Also =—......(8)

€0
K is also known as ‘relative permittivity’ of the dielectric. When a dielectric is placed in electric
field, the distribution of field changes to a degree depending upon relative permittivity.
Now, we can write
D=KgkFE

Or D=¢FE
D

Or &g==- .. 9)

E
Hence the permittivity of a dielectric medium is the ratio of electric displacement to the electric

intensity in the dielectric.

Problem 1: The electrical susceptibility of a material is 35.4x10"*C*N"'m™. What are the value
of the dielectric coefficient and the permittivity of the material?
Solution: The dielectric coefficient k of a material is related to its electric susceptibility x. by

K:1+X)e /&g
= 1+35.4x10™"%/ 8.85x10™"*
=1+4=5
The permittivity is
e=Kgp

=5(8.85x10™%)
=44.3x 102 coul? / newton-m>

6.6 MICROSCOPIC VIEW OF POLARIZATION

When a dielectric substance is subjected to an external electric field Eq , the electric field acting
on an atom or molecule within the substance is not the same as the external field. It is somewhat
different. The calculation of electric field acting on an atom or molecule is a major problem of
dielectric theory. We call this field local or internal electric field Ejocq or E; . It is this field which
acting on an atom or molecule induces dipole moment P; . Obviously, the induced dipole
moment is proportional to the local electric field.

piocElocal

pi= QEjocal
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Here a is proportionality constant and is called polarisability. It is a microscopic parameter of
dielectric and cannot be measured directly in laboratory. If the substance contains n
atoms/molecules per unit volume then polarisation vector P is given by

p = n pi = naEgcal

coul.meter coul.
B = = . meter’ = farad.meter”

Unit of a: a=== =
E volt/meter vol

6.7 KIND OF POLARIZABILITY

The magnitude of polarisability is measure of ease with which an atom/molecule undergoes
distortion under the action of an electric field. There are three kinds of polarisability:

(i) Electronic

(ii) Ionic or atomic

(iii) Dipolar or orientational.
6.7.1 Electronic Polarisability (a.)
In absence of any electric field on an atom the centre of negatively charged electron cloud
coincides with the centre of positively charged nucleus. So the dipole moment of atom is zero.
When an electric field Eyis applied on a dielectric, its constituent atoms experience electric field
Eiocal. Under the action of this field, electron cloud shifts slightly in a direction opposite to the
electric field and nucleus in opposite direction. The nucleus being much heavier than the electron
cloud, its shift is negligibly small. The centres of negative and positive charge no longer
coincide. This charge separation is attended with an induced dipole moment. The charge
separation also results in a force of attraction between them which opposes the action of the
electric field as a result of which equilibrium is soon established. Let x be the separation of
centres of positive and negative charge. The electric field of electron cloud at the location of
nucleus is

_ X zZex _ bi
3gp  4mgpad  4meead
Ze . . : : .
Here p = @5 S the volume density of charge, pi = Zex is the induced dipole moment Z =
TC
atomic number of atom, a = radius of atom. In equilibrium, £ = Ejyca
pi
Epca =E=
local 4mcga’
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(a)

Figure 1 (a) Centre of positive and negative charge coincide (b) The electric field creates a
separation between of centres of positive and negative charge.

The electronic polarisabilty o, of the atom is given by
e (10)

Pi _
Elocal
This shows that electronic polarisability is proportional to the volume of the atom.

6.7.2 Ionic (atomic) Polarisability(a;)
This kind of polarisability occurs in ionic solids which are made up of ions (NaCl, HCI). Let a
be the separation of ions in absence of electric field. Under the action of electric field the positive
ions are pulled on one side and the negative ions on the other. Thus the separation of cautions
and anions is increased. This creates an induced dipole moment. The induced dipole moment p; is
proportional to the local field acting on the ions.

pi= Elocal ....... (1 1)

e =

where q; is ionic polarisabilty.

6.7.3 Orientational Polarizability (a)

The orientational contribution to polarizabilty arises when the substance is built up of molecules
possessing permanent dipole moment. In the absence of external electric field, the dipole
moments are randomly oriented in all directions. When an electric field is applied, this is a
tendency for the permanent dipoles to orient (align) themselves in the direction of the applied
field thus producing a net dipolemoment. This mechanism is called orientational dipolar or
polarisability. The induced dipole moment is expressed as

Do = QoEiocal

Where p is the average value of induced dipole moment per molecule and ay is a constant called
dipolar or orientational polarisability. Generally interfacial polarisability is neglected.
Polarisability of such type is due to large number of defects in the structure of crystal (lattice
vacancies, impurity centres, dislocation etc.)

Thus, dielectric polarisation is a sum of three contributions

P=P+P+P,

Page 118



BSCPCH102 ELECTRICITY AND MAGNETISM

Correspondingly

a=0a.+ o+ o

Or o=0yq+ oo
Where a4 = a. + a; and called deformation polarisability. It results from the deformation of
molecules caused by electric field.
Non — polar molecules can have only deformation (electronic and ionic) polarisabilty while polar
molecules can have both deformation as well as orientational polarisability.

6.8 MOLECULAR FIELD OR LORENTZ LOCAL FIELD IN A
DIELECTRIC

The polarisabilty « as a scalar quantity and has the dimension of volume i.e., meter’. Each of the
three types of polarisability is a function of frequency of the applied voltage. The electric field
which is responsible for polarising a molecule of the dielectric is called themolecular field or
polarising field. If the dielectric is a gas (whose molecules are at large distances from one
another), the polarising field is simply the externally applied field. In case of solid or liquid
dielectrics, however, the actual field acting on a molecule of a dielectric is different from the
external field. It includes not only the external field but also the field produced exception of the
molecule under consideration (because it will not be polarised by its own field). This is known as
local or internal or microscopic electric fieldacting on a molecule and is responsible for the
polarisation of this particular molecule. Lorentz (1909) was the first to evaluate this field and
hence it is named after him.

= e = _ _ e Fr(.f_\ -
tn Kh (_ ) E ]E i *J[ Charges j_}
‘ Lo
' N |
|

ﬂ

A .
100000 || |1 v |-
= - [ | [
1o SIS | ] YEON- 4 |-
£ 4 .
HSISNSVTXS NS/
i -
locooco 1
: @ @ @ @ ™ ‘i:_l k % _A\_J__CBhOaL:-I;SS +/ .
(a) (b)
Figure 2

The following method suggested by Lorentz can be used to calculate the local field at a
molecular position. Let the dielectric sample be polarised placing it in the uniform electric field
between two parallel plates of a capacitor (figure 2). Suppose we want to calculate the field at
position A4 of the molecule assuming that this molecule is not present at all. We draw a sphere
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around A, the size of which is big enough to contain a large number of molecules but small
compared to the distance between the plates of the capacitor. The dielectric outside the sphere
may be treated as a continuum of dipoles (macroscopic point of view). The molecules inside the
sphere are, however, to be treated as individual dipoles. Now the local field at 4 is due to three
sources:
(1) The external field £y which is determined by the free charges on the plates between which
dielectric is placed.
g
Ey= e

Where o = free charge density on plates of capacitor.

(i1) E, is the field at centre (4) of the sphere due to the bound charges on its surface. In order to
calculate it dS be a surface element of the sphere with polar coordinates (», 6). The
component of the electric polarisation P normal to dS is P cos 6. The induced charge density
the field due to polarised molecules (dipoles) of the dielectric outside the sphere.

To evaluate this contribution, the dielectric sample outside the sphere may be replaced by bound
(induced) charges on the outer faces of the dielectric and also on the surface of the sphere as
shown in fig.

Let E; be the depolarising field due to the bound charges on the outer faces of the dielectric and

E, be the field due to the bound charges on the surface of the sphere. Then E, = —Z-— , where o is
0

the bound charge density. The negative sign signifies that £| opposes Ey. E, shall be evaluated

shortly.

(iii)) The field (£3) due to the polarised molecules within the sphere. This field is zero for many
practical cases of gases, liquids and cubic crystals. We shall therefore ignore it here.

Hence the total electric field at 4 may be written as

Elocal = Eo + E1 + E

o o
Elocal =—-— E2
€ o

We know that the net macroscopic electric field within the dielectric is given by

'
g g

=—-— . (12)
Therefore, Eoa=E+E, ... (13)

Over dS is therefore P cos 0. The charge on dS is P cos 0 dS where 0 is the angle between
direction of P (or E) is and the radius of the sphere.
The field at 4 due to the charge on dS is 1/4ne(P cos 0 dS/ r*), where r is the radius of sphere.

The field is directed from 4 to dS. The component of this field in the direction of E is

1 P cos6dS Pcos?0dsS
( )cosh =

4meg r2 4meg 12
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Figure 3

Now, suppose that dS is a ring shaped element (shown shaded) of radius rsinf and width »d® on
the surface of the sphere. The area of the element is

dS = 2n(r sinB) rd® = 21 sinddh.

The component of the field at 4 perpendicular to E due to this ring is zero, since such
components are symmetrically distributed around the axis. The component of the field along the
direction of E is

Pcos?0dS  Pcos?0r?(2m sinfdo)
dnggr? 4me, 12

= ——0s°0 sinfdo
2¢

The field E;, at 4 due to the entire induced charge on the surface of the sphere is

E,= f:%COSZG sinfdo

= Zifon cos?0 sin0d0
€0

. P
In vector notation E, = To e (14)
0

Substituting E, in equation (13)
—E+2
Elocal_ E + 36, U (15)

This is the actual field at the position of a molecule within the dielectric and is called ‘Lorentz
field equation.’
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6.9 CLAUSIUS-MOSSOTTI EQUATION

Clausius and Mossotti tried to correlate the macroscopic properties of a dielectric with its
microscopic character. They established a relation between the dielectric constant (a macroscopic
parameter) and the molecular polarisability (microscopic parameter) of a non-polar dielectric.
This relation is known as ‘Clausius-Mossotti Equation.’
The polarisabilty (a) of a molecule is the dipole moment (p) induced in the molecule per unit
polarising (local) field. That is

P = 0Elocal
if there are n molecules per unit volume of the dielectric, then the polarisation P is given by
P =np = naEical.

P ) ) o ) )
We know that Eycq = E + Foalt where £ is the macroscopic field within the dielectric.
0

- P
~P =na (E+ 380)

Now, the polarisation P is related to the dielectric constant K by the equationP = (K - 1) gkE.
Then we have
(K- 1)eo E

(K-1gkE=na[E+ ]
380

or (K - l)so=n(x[l+%] =no (%)

or oq=22&bL (16)

n(K+2)

This is known as the ‘Clausius — Mossotti Equation. If n is known, a can be calculated by
measuring Kexperimentally.
Equation (16) reduces in another simple form by using the relationkK ZEi .
0
That is
€—gp _ na

€426 3€0

The magnitude of ~——2 or &=1)
€+ 2gg (K+2)

The Clausius-Mossotti Equation can also be written interms of the dielectric suscepetibilty y. by
puttingK = 1 + f—e . That is
0

is known as specific polarisation of a dielectric.

q=0_Xe (17)

n ye+ 3¢

The Clausius — Mossotti Equation has been verified experimentally for a number of gases
1 (K-1)
n (K+2)
of n was varied by changing the pressure of hydrogen gas and the dielectric constant K was
K- 1)

measured for various pressures. It was found that L)}
n(K+2)

(hydrogen etc.). Since a is constant for a particular gas, must be a constant. The value

was independent of pressure, thus

verifying the equation.
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Limitation of the Clausius-Mossotti Equation

In deriving above equation the field (£3) due to polarised molecule within the sphere is supposed
to be zero because of the following assumption:
(1) Since polarisation is considered as proportional to the field, it means the

polarisation of the molecules is by elastic displacement only.
2) Absence of short range interaction.
3) Isotropy of the polarisability of the molecules.

All these condition are satisfied with neutral molecules having no constant dipoles i.e., non-
polar molecules. Thus the equation is valid for non-polar liquids and gases only. It does not hold
for crystalline solids and polar molecules.

Atomic Radius: It can be shown that a is proportional to the cube of the radius of the molecule.
Hence if K is found and # is known for a gas at a given temperature and pressure, the radius of
the atom may be found for monoatomic gases.

6.10 DEBYE EQUATION OR LANGEVIN-DEBYE THEORY OF
POLARIZATION IN POLAR DIELECTRIC

When a polar dielectric is placed in the electric field, two things happen. First, it displaces the
centre of gravity of protons and electrons so that an extra dipole moment is induced giving the
electronic polarisability. For the moment, we shall ignore this induced dipole contribution, but its
effect will be added later. Second, the individual molecules experience torque which tends to
align them with the field. But the alignment is not complete because of the thermal motion of the
molecules which favour random orientations. The average alignment produced gives rise to a net
dipole moment per unit volume. If the temperature of the specimen is raised, the polarisation
becomes even smaller due to the increase in thermal agitation of the molecules. Thus, for polar
dielectrics, the orientation polarisability and hence the dielectric constant and the electric
suscepetibility do depend on temperature.

Let us now calculate the net dipole moment per unit volume created by alignment of the
molecules at a temperature 7. Let n be the number of molecules per unit volume of the specimen
and 0 be the angle which the permanent dipole moment pyoof a molecule makes with the
polarising field E (Here E means Eq,, the effective electric field for simplicity we avoid the
subscript ‘local’).
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Figure 4

The potential energy of this molecule in the field is
U= —poE = poEcos6 ... (18)
The average effective dipole moment per unit volume may be calculated from statistical
probability law (Maxwell Boltzmann law) which states that at absolute temperature T°K, the
probability of finding a particular molecular energy U is proportional to ¢ where k is
Boltzmann’s constant.
Then the number of molecules (dipoles) per unit volume, dn, having energy and oriented at
angles between 0 and 0 + d0 with respect to the direction of E is given by

dn=Ce V¥ dey . (192)
Where C is a constant and do is the solid angle contained between 0 and 6 + d0 (figure 4). This
angle is given by
do = ringareabetween and 6 + do

r2
_ 2 (rsinB)(rdo)
=T
do =2msin6do
Substituting this value of dw in equation we get

dn = CPP <O Hr sinfdg
. E :
Let us write % =a and 27 ¢ = C (a new constant). Then

dn = Ce®°%Y sin 0. do
The total number of molecules per unit volume is

T
n= jdn: C’f e%c0sY sin 9. do
0

Now each of the dn molecules has a component of dipole moment p, cosf along the direction of
the field. The dipole moment of dn molecules along the field direction is thus pgcos6 dn. (By
symmetry, the sum of the components at right angles of the field is zero).

Average dipole moment in the direction of applied electric field is given by
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total dipole moment in the direction of field

p= total number of dipoles

_ f: pocosbdn _ po f: 2a¢059¢0sp sinfdd

Jo dn Jy <0 sinodo

Putting cosf = x, — sin 040 = dx we have

Do f_11 xeMdx

N 1 ax
[t g ! o

5:
=p0% [In (e* —e™®)—Ina]

e+ e 1]
ed—e—a a

e

=po(cotha—2) (19b)
=pll(2) L (20)
Where L(a)=coth a - % is called Langevin function. The polarisation P of the dielectric is
P =np =np,L(a) = npo[coth a-— ﬂ ..... (21)

A plot of Langevin function L (a) against a is shown in the figure (5). For large value of

%x‘.e., at large field strengths or low temperature

L(a)=(cotha =) > 1....(22)

So P—-np, = saturation value of polarisation.

% —— a(=PoE./kT)
Fig. [

It means the maximum value of the dipole moment per unit volume can be produced in the
dielectric when all the molecular dipoles are perfectly aligned in the field direction. Thus large
fields and low temperature causes P to approach its saturation value. This is clear from the latter
part of the curve. In practice, however, the dielectric would break down (i.e. would become

conducting) at such large fields.

At ordinary temperature, for fields even upto the dielectric strength a is small and the curve is

linear. The dipole moment p, of most polar materials is such that a<<1 (=107) for a full range of

field strengths.
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Since it is the linear region, which is important, it is appropriate to expand L(a) in a power series
of a and keep only the important terms.

L(a)Z(cotha—%) _a @

3 45
Practically a is very small, hence,

La)= 3

Now equation (19) reduces to

ZE
P=rnpo; =7%....(23)

It follows from this equation that the polarisation P is linear function of polarising field E, as
shown by the initial (Straight line) part of the curve. Thus a dielectric material containing polar
molecules is, in general, linear.

From equation (21), the electric susceptibility y. of the dielectric material is given by

_P_mg
E 3kT
Thus the electric susceptibility and hence also the dielectric constant of a polar dielectric is

inversely proportional to the absolute temperature. It is this feature which distinguishes a polar
dielectric from a non-polar dielectric for which both the susceptibility and the dielectric constant
are independent of temperature.

Now, the polarisability is defined as the dipole moment of a molecule per unit polarising field.
Therefore, the polarisability ay due to the alignment of the molecular dipoles of the polar
dielectric is given by, from equation (21).

P npd

0= =

nE  3KkT
This result has been derived by neglecting induced dipole moments and represents the

orientational polarisability. In fact, the induced dipole moments (which are responsible for the
polarisation of non polar dielectrics) are also present in polar dielectrics. They give rise to
‘deformation polarisability, og’. Thus the total polarisability of a molecule of polar dielectric is
a=0g T Qo

2
Oor a=ag+2- . (24)

This equation is known as Langevin Debye equation and it has been of great importance in
interpreting molecular structures.

The magnitude of g for both polar and non-polar dielectrics is of the same order. At ordinary
temperatures, o i1s much larger that oy. This is because the permanent dipole moments, where
they exits, are enormously larger than any induced moment. This is why the dielectric constant
for a polar dielectric is higher than that for a non-polar dielectric. For example, the dielectric
constant of water is about 80, while a typical non-polar liquid might have a dielectric constant
around 2.

The above theory is valid for liquids and gases. In a solid dielectric the molecules are very
density packed and so their mutual interactions cannot be ignored.
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6.1 BEHAVIOUR OF DIELECTRIC MATERIAL IN AN
ALTERNATING ELECTRIC FIELD: COMPLEX DIELECTRIC

CONSTANT

When a dielectric material is kept in an alternating field, the macroscopic electrical field E as
well as the polarisation vector P and displacement vector D become time dependent. In general,
the polarisation vector P lags in phase over the electrical field E and thereby D too. This
phenomenon can be represented geometrically by representing them in Argand plane as below.

Let the complex electric field be represented as
E = Egpel®t .. (25)

With peak value Ej and frequency o, then the polarisation vector P is represented as

P = Pye/@t=9__ (26)
Where 0 is the phase angle.
The displacement vector (complex) is defined as
D=c¢E+ P
= Do ..(27)

Now, the complex permittivity of the dielectrics defined as
D D,
E

= _e—u)cl)
Eo

Or &R = e __(28)

0

Where K is the complex dielectric constant. K may be represented as K; — jK; , where K; and K;

are the real and imaginary parts of K.
Thus, with the help of equation (26), we have

K, —jKi = 22 e7i% . (29)

€oEo

IMAGINARY
AXIS

——

— REAL AXIS
Figure 6

Now, equating real and imaginary parts, we have

D
K. =—>cos}
€oEo
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Do
)
It can be shown that imaginary part of dielectric constant is related to the power loss in the
dielectric, which is delivered by the source. The heating effect of water in an alternating electric
field is an example of this.

and K=

6.12 TERMINAL QUESTIONS

Long Type Question
1. Define polar and non-polar molecules. Deduce Clausius —Mossotti relation for non-polar
dielectrics.
2. What is dielectric polarisation ? Give the Langevin’s theory of polarization in polar
dielectrics.
3. Explain Langevin-Debye theory of polarisation in polar dielectrics. Show that for polar
dielectrics the susceptibility is inversely proportional to the absolute temperature.
4. Differentiate between electronic, ionic and orientational polarisability.
5.
Short Type Questions
1. Deduce relation between dielectric constant and electrical susceptibility of dielectric.
State Clausius-Mossotti relation.
What is the Electronic polarisability ?
What is the atomic polarisability ?
What is the orientational polarisability ?
Write Langevin-Debye equation of polar dielectrics.
Write the Limtation of Clausius-Mossotti equation.

NNk

Objective type questions

1. Langenin’s Functions L(x) is :
(a) Cothx + 1/x
(b) Coth x-1/x
(¢) X cothx
(d) Coth x-x

2. Electric susceptibility of a polar dielectric at absolute temperature T is :
(a) Directly proportional to T
(b) Inversely proportional to T
(¢) Directly proportional to T
(d) Inversely proportional to T*

3. Claussius- Mossotti equation does not hold for :
(a) gases
(b) liquid
(c) crystalline solids
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(d) none of these
4. The relation between dielectric constant K and dimensionless electric susceptibility y. is :
(a) K=1+ g e
(b) K=1- .
(©) K=1+ 7.
(d) K=¢&o %

6.13 ANSWERS

Objective type questions:
1. (b) 2.(b) 3.(c) 4.(c)
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7.1 INTRODUCTION

The magnetic effects can be produced by a magnet or by a current carrying conductor. The
region around a magnet or current carrying conductor, in which a magnetic needle experiences a
torque and rests in a definite direction, is called ‘magnetic field’. A charge moving in a magnetic
field experiences a deflecting force. Of course, if a charge moving through a point experiences a
deflecting force, then a magnetic field is said to exist at that point. This field is represented by a

vector quantity B, called magnetic field or magnetic induction. The magnetic induction can be
defined in terms of lines of induction as the number of lines of induction passing through a unit
area placed normal to the lines measures the magnitude of magnetic induction or magnetic flux

density B. Obviously, in a region smaller is the relative spacing of the lines of induction, the
greater is the magnetic induction. The tangent to the line of induction at any point gives the

direction of magnetic induction B at that point. The lines of induction simply represent

graphically how B varies throughout a certain region of space. In the present unit, you will study
the force on a moving charge in simultaneous electric and magnetic fields, Biot-Savart law,
magnetic force between current elements, Ampere’s circuital law and its applications.

7.2 OBJECTIVES

After studying this unit, you should be able to-

e understand Lorentz force

e apply Biot-Savart law

e apply Ampere’s circuital law

e solve problems using Biot-Savart law and Ampere’s circuital law

7.3 LORENTZ FORCE

Let us consider a charged particle of charge q which is moving with velocity V in a magnetic

field B, then the magnetic force acting on that charged particle is given by -

F=q@xB) (1)

The direction of F will be perpendicular to both the direction of velocity vV and the direction of

magnetic field B. Its exact direction is given by the law of vector product of two vectors.
The magnitude of magnetic force is given as-

F = qvB sinf ....(2)

where 0 is the angle between velocityV and magnetic ficldB.
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e A

*q

<!

os])

Figure 1
If the angle between velocity v and magnetic field B is 90° then-
Fiax = qvB sin 90° = qvB

i.e. if velocity V and magnetic field B are at right angle then the magnetic force acting on the
charged particle is maximum that is equal to qvB.

I£0 = 0° or 180° i.e. velocity ¥ and magnetic field B are parallel to each other then-
F=qvBsin0°=0

i.e. if the charged particle is moving parallel to the magnetic field, it does not experience any
force.

If v =0, then F = 0. This means that if the charged particle is at rest in the magnetic field, then it
does not experience any force.

If a charged particle is moving in space where both an electric field Eand a magnetic field B are
present, then the total force acting on the charged particle is called the Lorentz force.

The electric force acting on charged particle, Ii =gE . 3)

The magnetic force acting on the charged particle, F, = q(V x B)

The total force acting on the charged particle, F = F + F,
=q E+ q(v x B)
oF=qE+@xB)] ... (4)

The force given by equation (4) is called the Lorentz force and the equation is known as Lorentz
force equation.

If a charged particle enters perpendicular to both the electric and magnetic fields, then it may
cancel each other and therefore, the charged particle will pass undeflected. In this situation,
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F=qE+@xB)]=0
or E=-¢xB . (5)

In magnitude, E=v xB or v= g ..... (6)

Thus a charged particle entering in simultaneous electric and magnetic field may pass
undeflected. Such an arrangement of simultaneous electric and magnetic fields is called velocity-
selector. Because the charged particle of only specified velocity given by v = E/B can pass
undeflected. The particle of velocity v < E/B will be deflected towards electric force and those
with velocity v > E/B will be deflected towards magnetic force.

7.4 BIOT-SAVART LAW

Oersted’s experiment showed that a current-carrying conductor produces a magnetic field around
it. French scientists Biot and Savart, in the same year 1820, performed a series of experiments to
study the magnetic fields produced by various current-carrying conductors and formulated a law
to determine the magnitude and direction of the magnetic fields so produced. This law is known
as ‘Biot-Savart law’.

Let us consider a conductor of an arbitrary shape carrying electric current i and P a point in
vacuum at which the magnetic field is to be determined. Let us divide the conductor into
infinitesimal current-elements. Let us consider a small current element XY of length dlI.

P Y x P

dl

Figure 2
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According to Biot-Savart law, the magnetic field dB produced due to this current element at
point P at a distance r from the element is-

(1) directly proportional to the current flowing in the element i.e. dB o< 1

(i)  directly proportional to the length of element i.e. dB o dl

(iii)  directly proportional to sin of angle between current element and the line joining
current element to point P i.e. dB « sin 0

(iv)  inversely proportional to the square of the distance of the element from point P i.e. dB
1

r2

Combining these, we get-

idlsinf
dB o —
r
__p idlsin®
or dB e (7)

where, ﬁ is a dimensional constant of proportionality whose value depends upon the units used

for the various quantities. It depends on the medium between the current element and point of
observation (P). Here, p is called the permeability of medium. Equation (7) is called Biot-Savart
law. The product of current i and the length of element dl i.e. idl is called the current element.
Current element is a vector quantity; its direction is along the direction of current.

If you place the conductor in vacuum or air, then p is replaced by poand thus Biot-Savart law
can be written as-

Ko idlsin®
4 12

dB =

W is called the permeability of free space or air.Its value in the SI system is assigned as-
1o = 47 x 107 weber/ampere-meter (WbA 'm™)

Thus,22= 107 WbA'm!

Ko or z—;’[ may also be expressed in Newton/Ampere” (N/A?).

The direction of magnetic field is perpendicular to the plane containing current element and the
line joining point of observation to current element. Therefore, in vector form, Biot-Savart law
can be expressed as-

= o idIx?

dB 4 13
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The resultant magnetic field at P due to the whole conductor can be found by integrating
equation (9) over the entire length of the conductor. Thus

B=/[dB
Direction of magnetic field dB:The direction of magnetic field dB is perpendicular to both the

current elementid/ and the position vector T of point P relative to current element and may be
found by the law of vector cross product or by Maxwell’s right hand screw rule. Thus in figure 2
the direction of magnetic field at point P is shown by x (cross) i.e. vertically inward (downward
perpendicular to the plane of the paper) and at point P , the direction of magnetic field is shown
by ¢(dot) i.e. vertically outward(upward perpendicular to the plane of the paper).

7.4.1 Maxwell’s Right Hand Screw Rule:

If we hold the screw driver in our right hand and rotate a screw in such a way that the point of
screw moves along the direction of electric current in the conductor, then the direction of rotation
of the thumb will be the direction of magnetic lines of force.

Magnetic lines of force

o

>

>

Current carrying conductor

Figure 3
7.4.2 Comparison of Coulomb’s Law and Biot-Savart Law

A current generates a magnetic field in the surrounding space while a stationary charge generates
an electric field. Coulomb’s law gives the electric field due to a distribution of charges while
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Biot-Savart law gives the magnetic field due to a current element. According to Coulomb’s law,
the magnitude of electric field at a point distant r due to a charge element dq is given as-

1 dq
418G T2

dE =

According to Biot-Savart law, the magnitude of magnetic field at a point distant r due to a
current element i dl is given as-

_ Mo idlsin®
dB = an  r2
where 0 is the angle between the length of the element and the line joining the element to the

point.

We, thus, see that Biot-Savart law is the magnetic equivalent of Coulomb’s law and both are
inverse square laws. However, these two laws differ in certain respect. The charge element dq is

a scalar while the current element i d/ is a vector (idi ) whose direction is in the direction of the
current. According to Coulomb’s law, the magnitude of electric field depends only upon the
distance of the charge element from the point. According to Biot-Savart law, the magnitude of
magnetic field at the point also depends upon the angle between the current element and the line
joining the current element to the point. Secondly, according to Coulomb’s law, the direction of
electric field is along the line joining the charge element and the point. According to Biot-Savart
law, the direction of magnetic field is perpendicular to the current element as well as to the line
joining the current element to the point.

Example 1: An electron moving with velocity 5107 m/sec enters a magnetic field of 1 Wb/m®
at an angle of 90° to the magnetic field. Estimate the magnetic force acting on the electron.

Solution: Here v = 5x10" m/sec, B =1 Wb/m?, 6 =90°, q=e= 1.6x10" C
Using F=qvB sinf

F = 1.6x10""x5x10"x1xsin90°

= 8x10™"* Newton

Example 2:A proton is moving northwards with a velocity of 3x10” m/sec in a uniform magnetic
field of 10 Tesla directed eastward. Find the magnitude and direction of the magnetic force on
the proton. Charge on proton=1.6x10"° C

Solution: Given v =3x10" m/sec, B= 10Tesla, q=1.6x 10 ¢
The magnetic force on proton F = qvB sin6

= 1.6x10"x3%x107x10xsin 90° = 1.6x107""x3x107x10x1 = 4.8x10"! Newton
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The magnetic field is directed eastward and the direction of motion of proton is northward i.e.
the direction of flow of current is northward. By Fleming’s left-hand rule, the force on the proton
will be directed vertically downwards.

Self Assessment Question (SAQ) 1:An electron is moving vertically upward with a speed of
2x10* m/sec. Find out the magnitude and direction of the force on the electron exerted by a
horizontal magnetic field of 0.50 Wb/m® directed towards west? Also calculate the acceleration
of the electron.

Self Assessment Question (SAQ) 2:An electron moving with velocity V along +x-axis enters a

uniform magnetic field B directed along + y-axis. What is the magnitude and direction of the
force on the electron?

Self Assessment Question (SAQ) 3:A 2 MeV proton is moving perpendicular to a uniform
magnetic field of 2.5 Tesla. Find the force on the proton. The mass of proton = 1.65x10%” Kg.

Self Assessment Question (SAQ) 4: Choose the correct option-

The force on a charged particle moving in a magnetic field is maximum when the angle between
direction of motion and field is-

(i) 45°(ii) 180°(iii) zero (iv) 90°
Self Assessment Question (SAQ) 5: Choose the correct option-
A moving electric charge produces-

(1) electric field only (ii) magnetic field only (ii1) both electric and magnetic fields  (iv)
neither of these two fields

75 MAGNETIC FORCE BETWEEN TWO PARALLEL
CURRENT CARRYING CONDUCTORS

Let us consider two long, straight and parallel current carrying conductors PQ and RS separated
by a distance r. Let i; and i, be the currents flowing in two conductors in the same direction
respectively. Now, let us find expression for the force acting between the conductors.

The magnitude of the magnetic field at a point P on conductor RS is —

= Ho2i1
4t T

By Maxwell’s right hand screw rule, the direction of this field is perpendicular to the plane of the
page directed downward.

P R
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Obviously, the conductor RS is situated in magnetic field B perpendicular to its length. It,
therefore, experiences a magnetic force. Using formula, F = iBI sin6, the magnitude of magnetic
force acting on a length / of conductor RS is given as-

F=1i, B /sinf = izz—;%l sin 90°

Or pofoZe (10)
The force per unit length of conductor RS is given by-
Fif=te2u (11)

4t T

By Fleming’s left hand rule, the direction of this force is towards conductor PQ if 1, is flowing in
the same direction as i;(Figure 4). Similarly, the force per unit length of conductor PQ due to

current i, in conductor RS will be same 1.e. F/l = :—;’[21%12 and is directed towards conductor RS .

Thus, if the currents are in the same direction, then the nature of the force is attractive. The two
conductors will have a tendency to move towards each other. If the two ends of the conductors
are fixed, then the shape of two conductors will be concave.

If the direction of currents in two conductors is opposite, the force on two conductors will be
outwards i.e. repulsive in nature (Figure 5) and now the conductors will repel to each other. If the
ends of two conductors are fixed, then the shape of these conductors will be convex.
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7.5.1 Definition of Ampere:

The force of attraction or repulsion between two long, parallel and straight conductors in vacuum
has been used to define ampere.

Mg 2iq1
F/| =221z
4t T

Leti;=1i, =1 Amp. and r = 1 meter, then

12 2
Fii=220 ) o7 200
4 1

T T
=2 x 10”7 N/meter

Thus, 1 ampere is the current which when flowing in each of two infinitely long parallel
conductors 1 meter apart in vacuum produces between them a force of exactly 2 x 107 N/meter
of length.
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Example 3: Estimate the force per unit length on a long straight wire carrying a current of 4
Amp due to a parallel wire carrying a current of 6 amp. If the direction of currents in two wires is
same, then find the nature of force acting between them. The distance between the wires is 3 cm.

Solution: Given i; =4 amp, i, = 6 amp, r=3 cm =3 x 10% m

h Ziliz

Using formula F// = , wWe get-
4t T

Force per unit length F// = 1x 107x 2><4><_62
3x10

=1.6x10"* N/m™

Since the direction of currents in two wires is same, therefore the force acting between them is
attractive in nature.

Example 4:Two parallel wires, 1 m apart, carry currents of 1 amp and 3 amp in opposite
directions. Calculate the magnitude and nature of force acting between them on a length of 2 m.

Solution: Givenr=1m, 1; =1 amp, i, =3 amp, /=2 m

2i4i,1

1 f— u_o -
Using F g e get

F=1x 1072252

=12x107 N/m (repulsive i.e. away from each other)

Self Assessment Question (SAQ) 6:The parallel wires each of length 200 cm and carrying a
current of 0.4 amp in the same direction, are kept 40 cm apart in air. Find the force per unit
length on each wire.

Self Assessment Question (SAQ) 7:“Two parallel wires carrying current in the same direction
repel each other”. Is this statement true or false? Give reason.

7.6 AMPERE’S CIRCUITAL LAW

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed
path is equal to p times the net current enclosed by the path” i.e.

$B.di=pi L. (12)
where i is the current enclosed by the path.

Let us suppose that the magnetic field induction B arises due to a long wire carrying a current of
i ampere. Now let us consider a circular path of radius r centred on this current carrying wire.
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Figure 6

The magnitude of magnetic induction at any point P on the circular path is given by-

o2
B=2— .. (13)
For all points on the circular path, the magnetic induction B has the same magnitude given by
equation (13) and it is parallel to the tangent to the circular path. Therefore, the line integral of

the magnetic induction B around the circular pathcentred on the current carrying wire is given
by-

2i

Bdl=¢Bdl=¢2Zrdo
4n r
=222i$56
=202i 2n) =i
4an & Ho
Thus we have- 45_B).El)=uoi

The sign of integral depends upon the direction in which the current is enriched. The sign is
positive if the path followed for line integral is parallel to B and negative if the path followed is
anti-parallel.
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If the path enclosing the current is not circular but is irregular of any shape, then we divide the
path into large number of small elements. Ampere’s law holds for closed path of any shape.

7.6.1 Differential form of Ampere’s Law

Ampere’s circuital law can be expressed in terms of magnetic field intensity (ﬁ). We know that-
§ = HOFI)
Therefore from equation (12) we have-

—

$ uoH. dl = po i

=
=)
Il

=

Or )
But current  i= [[].dS ....(15)

Where T is the current density and dS is small element of area at the point of current densityT
inside the closed path.

Therefore, equation takes the form as-
$H.dI=[f].dS ....(16)
Using Stoke’s theorem, we have-
$H.di = [f curl H.dS
Therefore, equation (16) becomes-
[ curl H.dS =[[].dS
ie. [f(curlH -J).dS=0 . (17)
As the surface is arbitrary, therefore integrand must vanish i.e.
curl H - T =0
or curl ﬁZT ..... (18)
Multiplying both sides by L in equation (18), we get-
wocurl ﬁ):pof

or curl poH = pof
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or curl B= uof ..... (19)

Equation (18) or (19) is the differential form of Ampere’s circuital law. The above relation (19)
indicates that the magnetic induction at a point is derived from the given value of T at that point
by integration. However this equation is not enough to derive Bata point because for the same

value of T at the point another term may be added to B. We, therefore, need another condition.
7.6.2 Applications of Ampere’s Law

Magnetic Field due to Long Straight Current Carrying Wire

Let us consider a long straight wire carrying a current i. From the symmetry of wire, it is clear
that the magnetic lines of force are concentric circles centred on the wire

't

Figure 7

Let P be a point at distance r from the wire at which magnetic field is to be required. Let us
consider a circular path of radius r passing through P. By symmetry, the value of magnetic field

is same at each point on the circular path. B and dl are always directed along the same direction.

Therefore, the line integral of B along the boundary of circular path is-
$B.dl = [ Bdlcos 0° =B [ dl = B (2ar)

Using Ampere’s circuital law-

—

$B.dl =i
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Putting for ¢ B. dI, we get-

B 2ar) =po i
Or B=leol
2nr
Or B=1te2
4 r

This is the required magnetic field.

7.7 MAXWELL CORRECTION IN AMPERE’S LAW

Let us examine the validity of this equation for time varying fields. Since divergence of curl of

any vector quantity is always zero, therefore div curl H = 0. Then equation (18) curl HZT
implies-

divj=0 .. (20)
We knowthe equation of continuity-
divi+2=0 21
] -0 (21)
divj=-2 22
or iv]=- prou (22)
Here p is the charge density.
From equations (20) and (22), we get-
Op _
5= 0
or p = constant

i.e. charge density is static. Thus we conclude that Ampere’s circuital law giﬁﬁ = 11s valid
only for steady state conditions and is insufficient for the cases of time varying fields. Hence to
include time varying fields, Ampere’s law must be modified. Maxwell investigated

mathematically how one could alter Ampere’s equation gﬁﬁa = 1 so as to make it consistent
with the equation of continuity.

Maxwell assumed that the definition of current density T is incompleteand hence something say
ﬁmust be added to it.Thus, the total current density, which must be solenoidal, becomesequal to
]+ ﬁ. Using this assumption, equation (18) curl ﬁZTbecomes-

cul H] +]4 .. (23)
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Now let us identify E) . Let us take divergence of equation (23) as-
diveurl H=div( +Jg) . (24)

But we know that the divergence of curl of any vector quantity is always zeroi.e. div curl H =0,
therefore, the above equation takes the form as-

divd +Jq) =0

or divj+div J4=0
or div jg=-div] . (25)

We know the equation of continuity-

div]+2=0
or div T =- %
Putting for div T in equation (25), we get-

dv g=2 . (26)
But by differential form of Gauss theorem we have-

divD=p .. (27)
where D is electric displacement vector.

Using equation (27) in equation (26), we get-

div Jg = A4)
=div (Z—?)
or ﬁ = (%)) ..... (28)

Therefore, the modified form of Ampere’s law becomes-
— > — > 06
curl H=] + J; =] + (E) ..... (29)

The additional term which Maxwell added in Ampere’s circuital law to include time varying

fields is called ‘displacement current’ because it arises when electric displacement vector D
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changes with time. By the addition of this term Maxwell assumed that this term i.e.

displacement current is as effective as the conduction current T for producing magnetic field.

Characteristics of displacement current

(a) Displacement current is a current only in the sense that it produces a magnetic field. It
has none of the other properties of current since it is not related with the motion of a
charge.

(b) Displacement current has a finite value even in a perfect vacuum where there is no charge
at all.

(¢) The magnitude of displacement current is equal to the rate of change of electric

. . — 6‘D’
displacement vector i.e. |4 = (E)
(d) Displacement current in a good conductor is negligible as compared to the conduction

current at any frequency less than optical frequencies.

Example 5:A 50 V voltage generator at 20 MHz is connected to the plates of air dielectric
parallel plate capacitor with plate area 2.8 cm” and distance of separation is 0.02 cm. Find the
maximum value of displacement current density and displacement current.

Solution: V, = 50 Volt, f = 20 MHz = 20x10° Hz, S = 2.8 cm®> = 2.8x10* m*>, d = 0.02 ¢cm =

2x1

0% m

V =V, sin ot = V,sin 2xft = 50 sin ( 2mx20%x10° t )

Displacement current density Ja = (Z—]:)
_ () _0( Vv
ot ot (80 d)

— %V

d ot

_ &0 0{50sin (2mx20x10° t)}

- d at

=22{50c0s (21 X 20 X 10 t)}x 21 X 20 X 10°

—-12
= 22200 {50 cos(2m X 20 X 10 t)}x 21 X 20 x 10°

=277.8 cos (4nx10" t) Amp/m’

Displacement current ig = JgxS= 277.8 cos ( 41x107 £)x2.8x10™

=0.0778x2.8 cos( 41x10" t) Amp
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Self Assessment Question (SAQ) 8:Choose the correct option-

The concept of displacement current was proposed by-

(1) Faraday (i1) Gauss (iil) Ampere (iv) Maxwell
Self Assessment Question (SAQ) 9:Choose the correct option-

Maxwell’s modified Ampere’s law is valid-

(1) only when electric field does not change (ii) only when electric field varies with time
(iii) in both of the above situations (iv) none of these

Self Assessment Question (SAQ) 10:Choose the correct option-

The displacement current arises due to-

(1) negative charges only (ii) positive charges only  (iii) both negative and positive charges
(iv) time varying electric field

Self Assessment Question (SAQ) 11:Choose the correct option-

Displacement current goes through the gap between the plates of a capacitor when the charge of
a capacitor is-

(1) zero (i1) decreasing (iii) increasing (iv) remaining constant
Self Assessment Question (SAQ) 12:Choose the correct option-
Displacement current is a current only in the sense that-

(1) it produces a magnetic field (ii) it produces electric field  (iii) it produces both fields (iv)
none of these

7.8 SUMMARY

In this unit, you have studied about Lorentz force and Biot-Savart law. You have studied that a
current carrying conductor produces magnetic field around it. You have also studied about the
magnetic force between two current carrying conductors and established its expression and
deduced the definition of ampere. You have seen that the conductors attract each other if currents
in them are in the same direction and repel each other if currents are in opposite directions. In
this unit, you have studied and analyzed Ampere’s circuital law and Maxwell’s correction in it.
According to Ampere’s circuital law, the line integral of magnetic induction around a closed path
is equal to o times the net current enclosed by the path. You have also seen that Ampere’s law
holds for closed path of any shape. You have known about displacement current and its peculiar
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characteristics. To present the clear understanding and to make the concepts of the unit clear,
many solved examples are given in the unit. To check your progress, self assessment questions
(SAQs) are given place to place.

7.9 GLOSSARY

Magnetic field- the region surrounding a magnetic

Magnetic induction- a vector which specifies the magnitude and direction of magnetic field at a
point

Simultaneous — concurrent, coincident

Electric force- the force experienced by a charge placed at a point in an electric field
Magnetic force- the force experienced by a charge in a magnetic field

Infinitesimal- minute, tiny

Vacuum- emptiness, vacuity

Characteristics- features, qualities

7.10 TERMINAL QUESTIONS

1. Explain the magnitude and direction of the force acting on a charge moving in a magnetic
field. When is the force maximum and when minimum?

2. Explain Biot Savart law.

3. Establish the expression for magnetic force acting between two long, parallel and straight
current carrying conductors.

4. Both the electric and magnetic field can deflect an electron. What is the difference between
these deflections?

5. Explain Ampere’s circuital law. Give its significance. Derive its differential form.
6. Explain Maxwell’s correction in Ampere’s circuital law.

7. Explain the concept of Maxwell’s displacement current and show how it led to the
modification of the Ampere’s law.

8. Obtain the generalized form of Ampere’s circuital law. Comment on the concept of the
displacement.

9. Throw the light on characteristics of displacement current.
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10. Using Ampere’s circuital law, establish the expression of magnetic field due to a long current
carrying wire.

11. Give a comparison between Coulomb’s law and Biot-Savart law.

7.11 ANSWERS

Self Assessment Questions (SAQs):

1. Given v = 2x10® m/sec, B = 0.50 Wb/m? , q=¢ = 1.6x10"° C, m=9x10>' Kg
Using F = qvB sinf, we get-

F = 1.6x10""x2x10*x0.50xsin 90° = 1.6x10""' N' (towards north, Using Fleming’s left hand
rule)

Using F =ma
Ora=F/m=1.6x10""/9x10"" = 1.8 x10" m/sec’
2. Using F = qvB sinf = evB sin 90° = evB
Using Fleming’s left hand rule, the direction of the force is along —z- axis.

3. Given K =2MeV =2x10°1.6x10"°=3.2x10"J,B=2.5 T, m = 1.65x10%" Kg

1 2K 2%3.2x10~13
K= > mv> orv= ’E = [ = 6.23%10% m/sec’

1.65x10~27
Using F = qvB sin = 1.6x10"7x6.23x10%x2.5xsin 90" = 7.88x107* N
4. (iv) 90°
5. (iii) both electric and magnetic fields

6. Given | =200cm=2m, i; =1,=04 amp,r=40cm =04 m

2X0.4x0.4

F/1= “—;21%12 =1x 107"x = 8x10™®* N/m (attractive)

7. The statement is false because one current carrying wire will experience force of attraction due
to the magnetic field produced by the other current carrying wire.

8. (iv) Maxwell
9. (ii1) in both of the above situations

10. (iv) time varying electric field
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11. (ii) decreasing (i11) increasing
12. (i) it produces a magnetic field
Terminal Questions:

4. The force exerted by a magnetic field on a moving charge is perpendicular to the motion of the
charge; hence the work done by this force on the charge is zero and therefore the kinetic
energy of the charge does not change. In an electric field the deflection is in the direction of
the field, hence the kinetic energy changes.
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8.1 INTRODUCTION

In the previous unit, you have studied and learnt about Lorentz force, Bio-Savart law and
magnetic force between current carrying conductors. In that unit, you have also studied about
Ampere’s circuital law and Maxwell’s correction in that. In the previous unit, you have learnt
about displacement current and its peculiar characteristics. In the present unit, you will learn

about curl and divergence of magnetic inductionB, vector potential and its importance, magnetic
flux etc. You will also study about magnetic fields due to circular and solenoidal currents and
establish the expressions for the field. When a current loop is placed in a uniform magnetic field,
then it experiences a torque. In this unit, you will learn about this torque and establish an
expression for the torque acting on that current carrying loop in a uniform magnetic field.

8.2 OBJECTIVES
After studying this unit, you should be able to-

understand curl and divergence of B

understand vector potential and magnetic flux

calculate the magnetic fields for circular and solenoidal currents

understand torque on a current carrying loop and solve problems

8.3 CURL OF B

The curl of a vector field at any point is defined as a vector quantity whose magnitude is equal to
the maximum line integral per unit area along the boundary of an infinitesimal test area at that
point and whose direction is perpendicular to the plane of the test area. The curl of vector field is
sometimes called circulation or rotation.

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed
path is equal to p times the net current enclosed by the path” i.e.

$B.di=pi L. (1)
where i is the current enclosed by the path.

Let us consider a region in which there is a steady flow of charge. The current density in this
region remains constant i.e. it does not change with time however its value may vary from place
to place. Now let us consider a closed path in this region as shown in figure (1). The total current
enclosed by this path is the flux of current density through the surface bounded by closed path
i.e. the total current enclosed by the path given as-

i=[[j.ds (2)
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where ] is the current density and dS is small element of area at the point of current densityT
inside the closed path.

Putting the value of i from equation (2) in equation (1), you get-

$B.di =y [[f].dS ]

Using Stoke’s theorem, you can convert line integral into surface integral as-
Jf curl BdS = po [f 7. S ]
Jf [curl B-poj]. dS =0
As the surface is arbitrary, therefore you have-
curl B - uof =0
curl B = p,of .....(3)

Thus the curl of B is equal top times current density. The above equation (3) is the differential
form of Ampere’s circuital law.The above relation indicates that the magnetic induction at a

point is derived from the given value of T at that point by integration. However this equation is
not enough to derive Bata point because for the same value of T at the point another term may be
added to B. We, therefore, need another condition.

8.4 DIVERGENCE OF B

The divergence of a vector function at certain point is defined as the outward flux of the vector
field per unit volume enclosed through an infinitesimal closed surface surrounding the point. The
divergence of a vector function is scalar quantity. It should be noted that the divergence itself is
simply an operator and has no physical meaning in itself. After operating on suitable physical
vector functions, it represents various significant physical scalar quantities. If the divergence of
any vector function in a region is zero, it means that the flux of the vector function entering any
element of this region is equal to that leaving it.

According to Biot-Savart law the magnetic field at a point due to a current element idlata point
having position vector T relative to current element is given by-

_ pg idixt
4n 13

dB (%)

The magnetic field due to complete circuit current is given as-
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B_M i dix?
B—4n§ﬁ = ...(5)

Taking divergence on both sides, you get-

divB =V.B =V. {:—;gﬁidw} .(6)

r3

or divB = :—;’Egﬁ V. {i iﬁ}
Butv (3)=- 5
Hence the above relation can be written as-
divB =-2¢v.{idixv(:)}
Using vector identity V. (K X ﬁ) = §.(V X K)- A (V X §), the above expression becomes-
divB =-26v(3). (v xidi)- (id).{vx v (3)} 7)

Now let us interpret the result. You that the magnetic field is specified at field point and the
current element idl is due to source point. The field point depends on variables (x,y,z) but on the

other hand the field source idl does not depend on variables (X,y,z), therefore it is obvious that
v x (idi) =0 n(8)
Also you know that the curl of gradient of a scalar function is always zero i.e.
curl grad (%) =0 orVx V(%) =0 .....(9)
Now using relation (8) and (9) in equation (7), you get-
divB =-226v(2).0- (idi). {0} = 0
iLe. divB =0 ....(10)

The above condition holds for all superposition of such fields or for the field of any distribution
of currents. The equation (10) implies that the magnetic field is solenoidal.

8.5 VECTOR POTENTIAL

The vector identity div curl A= 0 shows that the solution of the equation div B =0 can be
represented in the form as-
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B=curl A (1)

The vector field A, the curl of which is equal to the magnetic field B is known as vector potential

of a magnetic field B.
A will be specified uniquely only if its divergence as well as its curl is given. We choose
divA =0 (12)

This choice is called Lorentz gauge- the gauging condition for the potential. The arbitrariness in
the choice of the vector potential indicates that the vector potential plays only an auxiliary role
and cannot be measured experimentally.

Let us derive equation for vector potential. We know that V X B= uoT
Putting the value of B from equation (11), the above equation becomes-
Vx (VxA)=p
Using vector identity V X (V X K): v(v. K)- (V.V)A, the above equation becomes-
V(V.K)- (V.V)A = o]
Or grad div A - V2A= o]
Using Lorentz gauge given by equation (12), the above relation becomes-
0-V2A= uof
Or V2A = - ] n(13)

. vy .
In terms of Cartesian components of A, we can write-

VZAX =-Ho Jx

VA, =- 1oy c(14)

v2A‘z =-Ho JZ

Each component of the vector potential thus satisfies Poisson’s equation (V2@ = — Sﬂ) which
0

has the solution as-
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o) = — fff%dw o (15)

4TE

If all currents are concentrated in a finite region of space, then by analogy with equation (15), the
solution of equations (14) can be written as-

A o [y 1) gy ...(16)

7]
where i stands for x, y and z. In vector form, we have-

A® -t g 1 v (17)

In a case of a filamentary current i through a differential length dl along the wire, we have-
JdVv'=(@{/S)(Sdl’) =idlI’

Now the above equation becomes-

dA(®) =“—°@ ....(18)

4n ‘F—r"

Summing up over all volume elements of the filament, we get-

AR ﬁ i(r,) !

A(r):‘mfff ] dv .....(19)
The components of A vary as 1/r, like electric potential, which does not diverge with in a charge
distribution. As divergence of a curl of a vector is always zero and div B = 0 can be written as a

curl of a vector and thus A is a vector. Due to these reasons A is called by the name of vector
potential.

8.6 MAGNETIC FLUX

Let us consider a plane placedin a magnetic field. The magnetic flux linked with that plane is

defined as the dot(scalar) product of magnetic field (_B)) and the area of the plane (K) ie.

- —

The magnetic flux ¢ = B. .....(20)

If the perpendicular to the plane makes an angle 0 with the direction of magnetic field, then-
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The magnetic flux ¢ = BA cos0 ....2D)

Perpendicular to the plane

o

L
4

Figure 1

From equation (21), you can write-
¢ =(Bcosh) A .....(22)
= component of the magnetic field perpendicular to the planex area of the plane

Thus, you can define the magnetic flux as the product of the component of the magnetic field
perpendicular to the plane and the area of the plane.

If you consider the plane perpendicular to the uniform magnetic field, then the product of the
magnitude of the field and the area of the plane is called the magnetic flux ¢ linked with the
plane i.e.

®=BA (since 6 = 0°) (23)

If infinitesimal small surface area (d_S) ) is considered, then magnetic flux linked with that surface
area is given as-

de =B.dS .24

The total magnetic flux linked with the entire surface-
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¢=JfB.dS ..(25)

@ is positive if the outward normal to the plane is in the same direction as B and is negative if the

outward normal is opposite to B.
The SI unit of the magnetic flux ¢ is weber (Wb).
Since from equation (23), you have-

B =¢/A

Thus the unit of magnetic flux is also expressed in weber/meter’ ( Wb/meter” ). That is why the
magnetic field induction B 1is also called the magnetic flux density.

The CGS unit of magnetic flux is Maxwell.
1 weber = 10° maxwell
The magnetic flux is a scalar quantity while magnetic flux density is a vector quantity.

You may also express the magnetic flux in terms of the magnetic lines of force. We can represent
a magnetic field by magnetic lines of force. If you draw limited lines of force so that in a
magnetic field B = 1 Wb/meter” only one line of force passes per meter” through an area

perpendicular to Bin a magnetic field B =2 Whb/meter® only two lines of force pass per meter’
perpendicular to B, and so on, then these lines are called the lines of flux. In a magnetic field the
number of lines of flux passing per meter’through an area perpendicular to the magnetic field is
equal to the magnetic flux linked with that plane.

If 0 = 90 i.e. the plane is parallel to the magnetic field, then no flux-line will pass through it and
the magnetic flux linked with that plane will be zero.

Example 1: A coil having 1000 turn and area 0.20 meter® is placed normally in a uniform
magnetic field. The magnetic field changes from 0.20 Wb/meter” to 0.60 Wb/meter” uniformly
over a period of 0.01 sec. Calculate the change in magnetic flux associated with the coil.

Solution: Given Area of coil A =0.20 meterz, B, =0.20 Wb/meterz, B, = 0.60 Wb/meter’
The magnetic flux ¢ = BA cos0

Since the coil is placed normally in a magnetic field, therefore 6 = 0°

Therefore, the magnetic flux ¢ = BA cos 0° = BA

The change in magnetic flux due to a change in magnetic field B-
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A = (AB)xA
= (B>~ By )x A = (0.60 - 0.20)x0.20
=0.08 Wb

Example 2:Find the magnetic flux linked with a rectangular coil of size 6 cm % 10 cm placed at
right angle to a magnetic field of 0.5 Wb/meter”.

Solution: Given, The area of coil A =6 cm x 10 cm = 60 cm” = 60x 10™ meter? = 6x107 meter?
Magnetic field B = 0.5 Wb/meter”

Since the coil is placed at right angle to a magnetic field, therefore the angle between the normal
to the plane of coil and the direction of magnetic field 6 = 0°

The magnetic flux linked with the coil ¢ = BA cosd = 0.5x6x10>x cos 0° =3x10> Wb

Example 3: 5.5x 10™ magnetic flux lines are passing through a coil of electrical resistance 20
ohm. If the number of magnetic flux lines reduces to 5x107 in a short time, find the change in
magnetic flux.

Solution: Given, Initial magnetic flux @; = 5.5x 10 Wb, Final magnetic flux ¢, = 5x107
Therefore, the change in magnetic flux Ap = @, — @
=5x107 - 5.5% 10 =-5.0x10™ Wb
Self Assessment Question (SAQ) 1:Choose the correct option-
The divergence of a vector quantity is always-

(1) a vector (11) a scalar (ii1) sometimes a scalar and sometimes a vector
(iv) none of these

Self Assessment Question (SAQ) 2:Choose the correct option-

The curl of a vector function is always-

(1) a vector (i1) a scalar (ii1) sometimes a scalar and sometimes a vector
(iv) neither a scalar nor a vector

Self Assessment Question (SAQ) 3:Choose the correct option-

For a solenoidal vector-
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(1) curl of that vector = 0  (ii) gradient of that vector = 1  (iii) divergence of that vector = 0
(iv) divergence of that vector =1

Self Assessment Question (SAQ) 4:Choose the correct option-

(i) 1 weber = 10° maxwell (i) 1 maxwell = 10® weber (i) 1 weber = 10 maxwell
(iv) none of these

Self Assessment Question (SAQ) 5:A coil of wire enclosing an area of 200 cm? is placed at an
angle of 30° with a magnetic field of 0.10 Wb/meter’. What is the magnetic flux linked with the
coil?

Self Assessment Question (SAQ) 6:If the divergence of any vector function in a region is zero,
what does it mean?

Self Assessment Question (SAQ) 7:Why is the magnetic field induction B also called the
magnetic flux density?

8.7 MAGNETIC FIELD FOR CIRCULAR CURRENTS

Let us consider a circular loop of radius a, carrying current i (Figure 2). Let P be a point at the
axis of the loop at a distance x from the centre at which the magnetic field is required.

dl

dBcosa

y

o dB sina
dB’

dB’ cosa

»
|

X

Figure 2
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Let us consider a small current element of length dl at point A (at the top) of the loop, at right
angles to the plane of the page and directed outward. Let r be the distance of this small element
from the point P.

Using Biot-Savart law, the magnetic field due to this element at point P is-

Ko i dix?
an 13

dB =

....(26)

The direction of dB isperpendicular to the plane containing dl and r and is given by right hand

screw rule. As the angle between dl and T is 90°, therefore the magnitude of the magnetic field
(magnetic induction) is given by-

L . (27)

The direction of magnetic field dB is in the plane of the paper and at right angles to the line r, as
shown. Let us resolve this magnetic field dB into its components-

(1) The component of dB along the axis of loop = dB sin a  (horizontal component)
(i1) The component of dB at right angles to the axis of loop = dB cos a (vertical component)

Now let us consider another identical current element at point B (at the bottom of the loop) just
opposite to the previous element of same length dl, which is at right angle to the plane of the
page but directed inward. The magnetic field dB due to this current element at point P will be
equal in magnitude to dB but directed as shown. It is obvious that the components of dB and dB
at right angles to the axis (i.e. vertical components) are equal in magnitude but opposite in
direction. Hence they cancel to each other. But the horizontal components i.e. the components
along the axis are in same direction and hence they are added up. Thus the resultant magnetic
field at point P is due to horizontal components only.

Let us imagine that the entire loop is divided into such current elements, the resultant magnetic
field B at point P is directed along the axis and its magnitude is given by-

B=¢dBsina
Putting for dB in the above, you get-

B=¢2—sina

::—;rizgﬁdlsina ....(28)
. . . _A0_a_ a
In right angled triangle AOP, sin o R o
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Therefore, from equation (28), you have-

Mt _a
B=infdims

Mg i

a
wre P d
But § dl = 27 r ( the circumference of the loop)

oy i a

Therefore, B= e m&n a
Mol @
2 r2va2+x2
p,ia?
Or B=—2— .....(29)
2(a%+x2)2
If there are n turns in the loop, then each turn will contribute equally to B. Therefore,
ponia?
B= 5 .....(30)
2(a%+x2)2
The direction of the magnetic field B is along the axis of the loop.
At the centre of the loop, x =0, therefore, from equation (31), you have-
B =l ol _ ol (31
2(32-}-0)5 2a 2a

Again the direction of the magnetic field is perpendicular to the plane of the loop i.e. along the
axis of the loop.

If the loop is small, then x>>a, (i.e. a can be neglected in comparison of x)therefore, from
equation (30), you have-

ponia? ponia?

B =
2x3

- (32)

2(a2+x2)%
8.8 MAGNETIC FIELD FOR SOLENOIDAL CURRENTS

A solenoid is a long insulated copper wire wound over a tube of card-board or china clay in a
close-packed cylindrical helix. When electric current is passed through the solenoid, a magnetic
field is produced around and within the solenoid.
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Figure 3 shows the lines of force of the magnetic field due to a solenoid. The magnetic lines of
force inside the solenoid are nearly parallel which indicate that the magnetic field within the
solenoid is uniform and parallel to the axis of the solenoid.

Figure 3

Let there be a long solenoid of radius @ metre and carrying a current of ; ampere. Let the number
of turns per unit length of the solenoid be n. Let P be a point on the axis of the solenoid (Figure
4).

dx
«—
A B
aaC r
Oa P P — T T T T -
N —
Figure 4
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Let us imagine that the solenoid is divided up into a number of narrow coils and let us consider
one such coil AB of width dx. The number of turns in this coil is n dx. Let x be the distance of
the point P from the centre O of this coil. The magnetic field at P due to this elementary coil is
given by-

1, (n dx)ia?
3

dB = . (33)

2(a2+x2)2

Let r be the distance of the coil AB from P and da the angle subtended by the coil at P. Then in A
ABC, we have-

sin o = BC rda
AB dx
r da
or ==
sina
2 2 2

But in right angled triangle APO, a”+x"=r

Putting for dx and (a® + x%) in equation (33), you get-

rda,
l'10(n sin a)laz ton ia? da
dB = 3 = 5 7o
2(r2)2 r2sina

_ (ﬁ) ponida
“\rz) 2sina
2
But in right angled triangle AOP, (3—2) = sin” q, therefore-

ponido . 1 ..
dB ==— sin’a = - p_ni sin o da .....(34)
2sina 270

The magnetic field B at point P due to entire solenoid can be obtained by integrating the above
expression eq. (34) between the limits a; and o,, where o; and o, are the semi-vertical angles
subtended at point P by the first and the last turn of the solenoid respectively (Figure 5). Thus-

Total magnetic field B = f;: dB = f;lz % K, ni sin a da

N | =

L, ni f:‘f sin a da = % poni[- cos a]zz
1
Or B Z%uoni[cos 0,y — COS 0l ] .....(35)

When point P is well inside a very long solenoid, then a; = 0 and a, = 180° so that cos a; = 1 and
cos o, = -1. Therefore, equation ( 35) becomes-
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B =3 Hgnil1 = (=D)] = p,nil2]

Or B = p,ni .....(36)

Figure 5

At the end of the last turn, at P, a; = 0 and o = 90° , therefore from equation (35)-
B=1y ni 37
—Euonl ( )
At the end of the first turn, o; = 90° and a, = 180°, therefore from equation (35), you get-
B =1y ni 38
= E ],tonl .. ( )

Thus, the magnetic field at the ends of a long solenoid is half of that at the centre. If the solenoid
is sufficiently long, the magnetic field within it, except near the ends, is uniform. It does not
depend upon the length and area of cross-section of the solenoid. As a parallel plate capacitor
produces uniform electric field similarly, a solenoid produces a uniform magnetic field. The
uniform magnetic field within a long solenoid is parallel to the solenoid axis. Its direction along
the axis is given by a curled straight right hand rule.

8.9 TORQUE ON A CURRENT LOOP IN A UNIFORM
MAGNETIC FIELD

Let us consider a rectangular wire loop PQRS, of length / and width b, carrying a current i be

suspended in a uniform magnetic field B as shown in figure 6. Each side of the current loop
experiences a magnetic force in the magnetic field.
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The magnitude of the force acting on side PQ, F; =1 B /sin 0

Since the vertical side of loop PQ is always perpendicular to the magnetic field B. Therefore, 0 =
90°. Thus the force F; =iB 1sin 90’ =i B/

I
R >
AN |
lA ‘L
P F,
S .

v

’

Fy
Figure 6

Similarly, the magnitude of magnetic force acting on side RS, F, =1 B /sin 0

Since the vertical side of loop RS is always perpendicular to the magnetic field B. Therefore, 0 =
90°. Thus the force F, =i B /sin 90° =iB/
Thus, the magnitudes of magnetic forces acting on sides PQ and RS of loop are equal i.e.

F1:F2 =iB!/ (39)
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By Fleming’s left hand rule, both forces F_l) and F_l) are perpendicular to the page directed away

from the reader and towards the reader respectively. Obviously, the both forces F_l) and F_l) are
equal, parallel and opposite having different lines of action. These forces form a deflecting
couple which tends to rotate the loop clockwise.

Vs Normal

B\ s Axis of the loop

v

F
Figure 7

Let us suppose that at any time, the axis of the loop (normal to the plane of the loop) makes an

angle 0 with the direction of the magnetic field B (as shown in figure 7). Then, the instantaneous
moment of the deflecting couple, (or the torque) acting on the current loop-

T = magnitude of the force F; (or F,) X perpendicular distance between the line of action of the
forces

=iB/xbsinf=1B (/xb)sin6
But / x b = Area of the current loop = A (say), therefore-
T=iBAsin6 .....(40)
The magnetic force acting on the side QR of the loop, F;=1B b

Similarly, the magnetic force exerted on the side PS of the current loop, F4=1B b
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These forces F_3) and F_4) acting on the sides QR and PS of the current loop are equal and opposite
to each other but their line of action is the same. Hence, they cancel each other and do not form a
couple. Thus, the net force on the current loop is zero. Only the torque given by equation (40)
acts on it. This torque deflects the current loop to a position in which the axis of the current loop
is parallel to the magnetic field. In this position, 6 = 0°, therefore the torque becomes zero. This
torque T =1 B A sin 0 acts on every turn of the current loop. Therefore, if the loop is a close
wound coil having N turns, the torque acting on the entire loop is-

t=NiBAsin6
or T=NiABsin0 .....(41)

Obviously, the unit of torque is Newton-meter.

But term N 1 A is defined as the magnitude of the dipole moment M of the coil. Thus-

M=NiA ..(42)

Therefore, equation (41) becomes-
T=MB sin0 .....(43)
In vector form- T=MxB .....(44)

This is the required expression. It is the basis to the theory of a moving coil galvanometer.This
expression holds for closed loops of any shape, rectangular, circular or otherwise.

Example 4:Two similar circular coils of wire having a radius of 70 mm and 60 turns have a
common axis and are 18 cm apart. Find the strength of the magnetic field at a point midway
between them on their common axis, when a current of 100 mA is passed through them.

Solution: Given, a=70 mm =7 cm = 0.07 meter, n = 60, i = 100 mAmp = 0.10 amp, x = 18cm/2
=9 cm = 0.09 meter and o = 47 x 10”7 Wb/Amp-meter

The magnetic field due to either of the circular coils at a point on the axis distant x from the
centre is-

a2
phia
B=—"_

3
2(a%+x2)2z

_ 4mx1077Xx60%0.10%X(0.07)?

3
2(0.072+0.092)2

=2.5% 107 Tesla
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Example 5: A 30 turns circular coil of diameter 16 cm carries a current of 6 amp. It is suspended
vertically in a uniform horizontal magnetic field of 1 Tesla such that the magnetic field lines
make an angle of 30° with the plane of the coil. Estimate the magnitude of the counter torque
needed to be applied to prevent the coil from turning.

Solution: Given, N = 30, radius of the coil r = 16 cm/2 = 8 cm = 0.08 meter, i = 6 amp, B =1
Tesla, 6 = 90° — 30° = 60°

Area of the coil A =m r* = 3.14 x (0.08)> = 0.0201 meter”
Torque t=N1iA B sin =30 x 6 x 0.0201 x 1 x sin 60° = 3.13 Newton-meter
Therefore, a counter torque of 3.13 Newton-meter should be applied.

Self Assessment Question (SAQ) 8: A long solenoid of length 100 cm and radius of cross
section 1.5 cm, has five layers of windings of 750 turns each. If the solenoid carries a current of
650 Amp, compute the magnetic field at the centre of the solenoid.

8.10 SUMMARY

In this unit, you have learned about curl and divergence of magnetic field vector, vector
potential, magnetic flux and derived the expressions for magnetic field induction for circular and
solenoidal currents.We have defined the magnetic flux linked with that plane as the dot (scalar)

product of magnetic field (ﬁ) and the area of the plane (K). In this unit, you have also studied the
torque acting on a current loop in a uniform magnetic field and learned how the forces acting on
two sides of a loop placed in a uniform magnetic field, form a deflecting couple. To make the
concepts of clear, many solved examples are given in the unit. To check your progress, self
assessment questions (SAQs) are given place to place.

8.11 GLOSSARY

Steady - stable

Flow- stream, current

Divergence- deviation, departure

Magnetic flux — the surface integral of the magnetic field over that surface

Magnetic flux density — a vector which specifies the magnitude and direction of magnetic field at
a point

8.12 TERMINAL QUESTIONS

1. Prove that the curl of B is equal toply times current density.
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2. How will you define the curl of a vector?

3. Establish the condition that the magnetic field is solenoidal..
4. Give the significance of divergence.

5. Define vector potential.

6. Give the importance of vector potential.

7. A rectangular coil of size 0.5 meterx(.10 meter and 100 turns is placed perpendicular to a
magnetic field of 0.01 Wb/meter’. Evaluate the change in magnetic flux linked with the coil if it
is drawn from the magnetic field.

8. Is magnetic flux a scalar or vector? What about the magnetic flux density?
9. Define magnetic flux. What is its unit?

10.If the plane of a coil is parallel to the magnetic field, then what will be the magnetic flux
linked with the coil?

11. Why is A called vector potential?

12. Derive an expression for the torque acting on a rectangular coil of area A, carrying a current
i, placed in a magnetic field. The angle between the direction of magnetic field and normal to the
plane of coil is 6.

13. Establish an expression for the magnetic field at a point on the axis of a circular coil carrying
current, and hence at the centre of the coil.

14. Derive the following expression for the magnetic field of a solenoid-
1.
B= > uonifcos a; — cosa;]
Where symbols have their usual meanings.

8.13 ANSWERS

Self Assessment Questions (SAQs):

(i1) a scalar

(1) a vector

(ii1) divergence of that vector = 0

(i) 1 weber = 10® maxwell

Given, Area of coil A =200 cm? =200%10™* meter® = 2x 10?2 meter® = 0.02 meterz,
0=90"—30°= 60", Magnetic field B = 0.10 Wb/meter”

bk wh o=
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The magnetic flux linked with the coil ¢ = BA cos0
=0.10%0.02x cos 60° = 0.10x 0.02x 0.50 = 1x 10™* Wb

6. If the divergence of any vector function in a region is zero, it means that the flux of the
vector function entering any element of this region is equal to that leaving it.

7. Since @ =BA or B =¢@/A
Thus the unit of magnetic flux is also expressed in weber/meter” ( Wb/meter” ). That is
why the magnetic field induction B is also called the magnetic flux density.

8. Given, 1= 650 amp, length [ = 100 cm = 1 meter, n =5 x 750 = 3750 turns/meter
The magnetic field at the centre of the solenoid, B = p ni = 4xx 107 x3750x650

= 4x3.14x107x3750%650 = 3.061 Wb/meter’
Terminal Questions:

7. Given, Area of the coil A = 0.5 meterx0.10 meter = 5x 102 meterz, Magnetic field B =
0.01 Wb/meter”
Since the coil is placed perpendicular to a magnetic field, therefore 6 = 0°
Initial magnetic flux linked with the coil ¢; = BA cosd = BA cos 0° = BA
=0.01x5x10” = 0.00005 Wb
Since the coil is drawn from the magnetic field, no magnetic flux will be linked with the
coil. Therefore, final magnetic flux linked with the coil @, =0
Magnetic flux Ag = @, — ¢; = 0- 0.00005 = - 0.00005 Wb = - 5x10™ Wb
8. Magnetic flux is a scalar. Magnetic flux density is a vector.

10. If the plane of a coil is parallel to the magnetic field, then no flux-line will pass through it
and the magnetic flux linked with that plane will be zero.
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9.1 INTRODUCTION

Dear learners, in the previous unit, you have learnt about curl and divergence of magnetic field,
magnetic flux and established the expressions for magnetic field for circular and solenoidal
currents. You have also calculated the torque on a current loop in a uniform magnetic field.
According to the modern view, the magnetic properties of a substance are endorsed to the
electronic motions i.e. orbital motion and spin motion, in the atoms of the substance. Due to
these motions, each atom is equivalent to a tiny current loop and produces magnetic field. In the
unmagnetised state of the substance the current loops are oriented at random so that the magnetic
fields mutually cancel. When the substance is magnetized by some process, all current loops are
aligned with their planes parallel to one another and currents circulating in the same direction.
Hence a resultant magnetic field is produced. In the present unit, you will study about current
loop as a magnetic dipole and torque acting on a bar magnet in a uniform magnetic field. You
will also study about potential energy of a magnetic dipole in a magnetic field. You will also
learn about Ballistic galvanometer, its function and characteristics.

9.2 OBJECTIVES

After studying this unit, you should be able to-

e understand magnetic dipole

¢ understand torque on a bar magnet

e calculate the torque on a bar magnet and solve problems

e calculate the potential energy of a magnetic dipole in a magnetic field
e understand ballistic galvanometer

9.3 CURRENT LOOP AS A MAGNETIC DIPOLE

You know that a current carrying solenoid or a coil or a current loop behaves like a bar magnet.
A bar magnet having north and south poles at its ends is a magnetic dipole and therefore, a
current loop is also a magnetic dipole. You can calculate the magnetic moment of a current loop.
In the previous unit, you have learnt that the magnetic field due to a circular current loop of
radius a and having n turns at a point on its axis, distant X from the centre of the loop, is given
by-

pynia?

B =l (1)

3
2(a%+x2)z

The direction of this magnetic field is along the axis of the loop i.e. perpendicular to the plane of
the loop.
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For axial points far from the loop, we have x>>a, then the above expression reduces to-

ponia?

- .(2)
Multiplying by m in numerator and denominator in R.H.S., we get-
_ pomnia?
Cm2x3
_Homalni_ poAni 2 -
Pt (since ma“® = A, area of the loop)
Or B=>"— (3
The quantity niA is called magnetic dipole moment M of the current loop. Thus-
M =niA (4

The unit of magnetic dipole moment is ampere-meter”.

In vector form, we can write-
M = niA (5)

The direction of magnetic dipole moment M is the same as the direction of the area vector A of
the current loop. Thus, equation(3), for the magnetic field due to a current loop at a distant axial
point can be written as-

B _MM
B =t ....(6)

Thus, you see that B and M have the same direction.

9.4 TORQUE ON A BAR MAGNET IN A UNIFORM MAGNETIC
FIELD

You observe that when a bar magnet is suspended in a uniform magnetic field,it sets itself with
its axis parallel to the magnetic field. It means that the magnet positioned in the magnetic field
experiences a torque which rotates the magnet to a position in which the axis of the magnet is
parallel to the magnetic field. A current loop in a magnetic field shows the same behavior. The
current loop also experiences a torque which tends to rotate the loop to a position in which the
axis of the loop is parallel to the magnetic field. The bar magnet and current loop, both are
magnetic dipoles.

Page 174



BSCPCH102 ELECTRICITY AND MAGNETISM

According to the modern views regarding magnetism, each atom of the magnet is a small current
loop and all these current loops are aligned in the same direction. In a magnetic field, the sum of
the torques on these small loops is the torque acting on the magnet.

Magnetic axis
\ e

A N,

Figure 1

You have learnt that the magnitude of the torque exerted on a current loop positioned in a

magnetic field B if its axis makes an angle 0 with the direction of B is given by-
T=1ABsin0 ce(7)
Here, A is the area of the current loop.
If there are N current loops in a bar magnet, then the torque acting on the entire magnet is-
T=NiABsin0 .....(8)

You have read that the quantity N i A is defined as the magnitude of the magnetic dipole moment

M of all the N current loops or of the bar magnet i.e.
M=Ni A ...(9)
Therefore, equation (8) takes the form as-

T=MBsin6 .....(10)

Here 0 is the angle between the vectors M and B. In vector, the above expression (10) can be
written as-
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=M x B (11)
The magnetic moment M is directed along the axis of the bar magnet.

We can compare this torque with the torque exerted by an electric field (E) on an electric dipole
which is given as-

I=PxE ...(12)
Here P is the electric dipole moment.

There is a difference between these two torques. The torque on a magnetic dipole situated in a
magnetic field is an independent physical quantity. One cannot suppose that it is made up of two
parallel, equal and opposite forces acting on the magnetic poles. But on the other hand, the
torque on an electric dipole is made of two parallel, equal and opposite forces acting on the
electric charges of the dipole.

If the axis of the magnetic dipole be perpendicular to the magnetic fieldB, then the torque exerted
on it will be maximum. Thus,

Tomax - M B sin 90°
“MB cn(13)
Or M = T/ B
If B=1 (unit), then M = Ty«

Thus, the magnetic moment of a magnetic dipole is equal to the torque acting on the dipole if it is
placed perpendicular to a uniform unit magnetic field.

The SI unit of magnetic dipole moment is Joule/Tesla or ampere-meter”.

9.5 POTENTIAL ENERGY STORED OF A MAGNETIC DIPOLE

You have read that if a magnetic dipole (bar magnet, current loop etc.) is placed in an external
uniform magnetic field, then it is acted upon by a torque which tends to align the magnetic dipole
in the direction of the magnetic field. Therefore, work must be done to change the orientation of
the magnetic dipole against the torque. It means that the magnetic dipole has magnetic potential
energy depending on its orientation in the magnetic field. Let us evaluate this energy.

Let us consider a magnetic dipole of magnetic dipole moment Mplaced at an angle 0 with the

direction of a uniform magnetic fieldB. Then, the magnitude of the torque exerted on the
magnetic dipole is given as-
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t=MBsin 0 .n(14)

Now, let the magnetic dipole is rotated through an infinitesimally small angle dO against the
torque, then the amount of work done for this act-

dW=1d0 . (15)
Putting for t from equation (14) into equation (15), we get-
dW = (M B sin 0) d6 ...(16)

If the magnetic dipole is rotated from an initial orientation 0, to a final orientation 0,, then the
total work needed will be-

W= [,2dw
= J,*(M Bsin 6)do

=MB feef(sin 0)d0 = MB |- cos 6]22
1

= - MB (cos6, — cosb,)
Or W = MB (cos6; — cos0,) (17)

This work is stored in the form of potential energy U of the dipole in the new orientation 6.
Therefore,

U = MB (cosf; — cos0,) .....(18)

Now let us assume the potential energy of the magnetic dipole to be zero for its any arbitrary
orientation. Let us suppose potential energy U is equal to zero when the axis of the dipole makes
an angle 0 = 90° with the direction of magnetic field. Thus, taking 6; = 90° and 6, = 6, then the
expression (18) becomes-

Up = MB (c0s90° — cosB)

=MB (0 — cos0)
Or Up = - MB cos .....(19)
In vector notation, U=-M.B.. ...(20 a)

If 0 = 0°, then the potential energy of dipole Uy = - MB cos0"

OrUy=-M B
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This is the minimum potential energy that a magnetic dipole can have. Thus, you see that a

magnetic dipole has minimum potential energy when M and B are parallel.
When 0 = 180°, then the potential energy of dipole U;g9 = - MB cos180"
=MB

This is the maximum potential energy that a magnetic dipole can have. In this way, you see that a

magnetic dipole has maximum potential energy when M and B are antiparallel.

The difference in energy between these two orientations is given as-

AU =Uig - Uy
~M B — (- MB)
=2 MB

This much work must be done by an external agent to turn a magnetic dipole through 180°,
starting when it is lined up with the magnetic field.

Example 1: A current of 6 Amp is flowing in a plane circular coil of radius 2 cm having 200
turns. The coil is placed in a uniform magnetic field of 0.2 Wb/meter”. If the coil is free to rotate,
what orientations would correspond to its (a) stable equilibrium, (b) unstable equilibrium?
Calculate the potential energy of the coil in these two cases.

Solution: Given, i=6 Amp, r =2 cm = 0.02 meter, N =200, B=0.2 Whb/meter”
The area of coil A =n 1> =3.14 x (0.02)* = 0.001256 = 1.256 x 10~ meter’
The magnetic moment of the coil, M =N1i A
=200 x 6 x 1.256 x 107
=1507.2 x 10° = 1.5072 Amp-meter”
The potential energy of the coil when placed in a uniform magnetic field is given by-
U =- MB cos0

(a) In the case of stable equilibrium, the coil will orient itself so as to have a minimum (i.e.
maximum negative) potential energy and this corresponds to 6 = 0° i.e. the axis of the coil will be

parallel to the magnetic field i.e. M parallel to B . In this case, the potential energy will be-

Uyp=-MB cos0’
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=-MB
=-1.5072 x 0.2 =-0.30144 Joule

(b) In the case of unstable equilibrium, the coil will have maximum potential energy. This will be
so when 0=180"i.c. M anti- parallel to B. The potential energy will be-

Ujgo = - MB cos180° =M B
=(0.30144 Joule

Example 2:A short bar magnetof magnetic moment 0.50 Joule/Tesla is held with its axis at 30°
with a uniform external magnetic field of 0.15 Tesla. Find the magnitude of the torque exerted on
the magnet by the magnetic field.

Solution: Given, M = 0.50 Joule/Tesla, 6 = 30°, B =0.15 Tesla
The torque exerted on the bar magnet-
1= MBsin0
=0.50 x 0.15 x sin 30°
=0.50 x 0.15 x 0.50 = 0.0375 Joule

Self Assessment Question (SAQ) 1:When is the magnetic dipole in stable and unstable
equilibrium?

Self Assessment Question (SAQ) 2:A bar magnetof magnetic moment 1.5 Joule/Tesla is set
aligned with the direction of a uniform magnetic field of 0.22 Tesla.

(a) Compute the work required to turn the magnet so as to align its magnetic moment (i)
normal to the magnetic field and (ii) opposite to the magnetic field direction.
(b) Also find the torques on the bar magnet in the two cases.

Self Assessment Question (SAQ) 3:A couple of moment 1.5 x 10 Newton-meter is needed to
keep a magnetic dipole perpendicular to a magnetic field of 6 x 10* Wb/meter’. Evaluate the
magnetic moment of the dipole.

Self Assessment Question (SAQ) 4:Choose the correct option-
The SI unit of magnetic dipole moment is-

(a) Amp-meter’  (b) Amp/meter (c) Tesla meter/Amp (d) none of these
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9.6 BALLISTIC GALVANOMETER

It is also known as moving coil ballistic galvanometer. Moving coil ballistic galvanometer is a
specially designed galvanometer for the measurement of the total quantity of charge passed
through it for a short duration. The ordinary galvanometer measures current.

A moving coil ballistic galvanometer consists of a c